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I, INTRODUCTION 

For several decades, reliable potentiometrlc methods have been 

available for the direct determination of pH. The determination 

generally involves the single measurement of the potential of a cell 

which consists of a suitable reference electrode and an indicator elec­

trode that is reversible to hydrogen ions. Today, the most widely used 

indicator electrode is the glass electrode but other more limited, yet 

reliable, methods are available for determination of pH. 

In comparison, the direct determination of the concentration of 

the ions of metals has not yet reached such a happy state. During the 

past thirty years many attempts have been made to devise electrodes which 

are as selective to metal ions as the glass electrode is to hydrogen 

ions. To date about twenty so-called ion-selective electrodes have been 

made commercially available. Several of the electrodes have been de­

veloped sufficiently to provide selectivity and range for specific 

cations or anions. Others, however, are quite general in response and 

are characterized by a drift in potential which necessitates frequent 

recalibration. The major problem is thus one of building specificity 

and stability into such electrodes. 

Ion-selective electrodes can be classified into two general 

types: solid (membrane) electrodes, such as the glass electrode for 

measuring pH; and soluble, reversible oxidation-reduction couples, 

such as the quinhydrone electrode also used for measuring pH. To date 

all of the ion-selective electrodes for metals have been of the former 

(membrane) type. The present thesis deals with an electrode of the 
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second type. 

In this work we have coupled the chelating group methyleneimino-

diacetic acid to the oxidation-reduction couple, quinone-hydroquinone, 

thus conferring on this reversible couple the property of combining with 

metals. In this way a soluble, reversible oxidation-reduction couple 

responsive to metal ions should be obtained. 

Initial work in this area was carried out by Diehl and Lohman (24) 

who developed a theory for a metallic ion indicating electrode based 

on analogy with the quinhydrone electrode but also incorporating 

chelation. The system involved the quinhydrone of 5,8-dihydroxy-

quinoline and 5,8-dioxoquinoline. The compound was tested on one metal, 

nickel, and shown to function as predicted over a limited concentration 

range, but the quinhydrone proved to be unstable and a functional elec­

trode was never realized. 

More recently, Pietrzykowski (30) initiated work on another oxida­

tion-reduction couple by synthesizing 1,4-dihydroxyphenylmethyleneimino-

diacetic acid (HaQMIDA) using the Mannich condensation of hydroquinone, 

formaldehyde, and iminodiacetic acid. 

OH acid OH 

Although it might be too much to hope that the unique existence and 

convenient insolubility of the quinhydrone would be duplicated, at least 
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it would appear possible to obtain a quinone and the corresponding hydro-

quinone bearing a methyleneiminodiacetic acid group and quite conceivably 

this couple might respond to metal ions. 

Because of the difficulty encountered in working with H2QMIDA, 

Pietrzykowski did little beyond synthesizing an obviously impure com­

pound and obtaining preliminary values for a few physical constants. 

The first efforts in the present work were directed toward synthesis and 

purification of HaQMIDA (5). The problems encountered resulted from the 

insolubility of HaQMIDA in acidic solutions and the instability of the 

free acid at high pH and at elevated temperature. The purified HaQMIDA 

finally obtained was used in a study of the physical and chemical prop­

erties of the material. The infrared, ultraviolet and PMR absorption 

spectra were obtained, and the behavior on titration with alkali, alone 

and in the presence of calcium and magnesium, was investigated (5). 

In the work being described in this thesis, further study was made 

of HaQMIDA, particularly the conversion of it to 1,4-quinone-2-methylene-

iminodiacetic acid (QMIDA) and the interaction of the QMIDA-H2QMIDA 

system with metal ions. 

It was found that HaQMIDA is fluorescent in the ultraviolet and that 

the fluorescence is affected by pH and by the presence of calcium and 

magnesium. Potentiometric titration of HaQMIDA with eleven chemical 

oxidizing agents was performed and the results interpreted. 

The actual nondestructive oxidation of HaQMIDA to QMIDA proved to be 

very difficult to effect. Oxidation of H2QMIDA to QMIDA by controlled 

anode potential was attempted. After extensive investigation and method 

development, QMIDA was finally prepared through the oxidation of H2QMIDA 
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with sodium periodate. The QMIDA was purified and the chemical and 

physical properties determined; ultraviolet, infrared and PMR absorption, 

melting point, solubility, stability, acid dissociation constants, and 

oxidation-reduction behavior. An attempt was made to form the quinhydrone 

of QMIDA and HaQMIDA. The behavior of the QMIDA-H2QMIDA system in the 

presence of thirteen representative metal ions was determined and finally 

a detailed study of the QMIDA-H2QMIDA couple as a function of the concen­

tration of aluminum was made. 
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II. BACKGROUND 

A. Organic Oxidation-Reduction Couples 

Many organic oxidation-reduction couples are known and many have 

been thoroughly studied in aqueous and nonaqueous solvents. To say that 

a couple is reversible is to imply that the electrical potential of a 

cell, made of two reversible couples, is reproducibly related to the 

chemical process in that cell. If no current is allowed to flow in the 

cell, there will be no chemical change of the couples involved. However, 

when an external voltage large enough to produce current flow is applied, 

a chemical change proportional to the quantity of electricity passed will 

occur at both electrodes. If the two electrodes are simply connected 

(externally, by a wire), current will flow in the opposite direction 

and the chemical reaction will be exactly reversed. Couples which ex­

hibit such reversibility completely are relatively rare. 

Generally, the organic oxidation-reduction systems that are re­

versible are compounds in which a hydrogen atom is united with an electro­

negative atom such as oxygen or nitrogen. The most widely known of the 

reversible organic couples are the aromatic dihydroxy or diamine com­

pounds, the aromatic ring providing stabilization by distributing the 

charge of the electron or proton added. 

The most extensively studied organic oxidation-reduction couple 

has been that of quinone-hydroquinone. This system is highly reversible 

and is the basis of a pH indicator electrode, the quinhydrone electrode. 



www.manaraa.com

6 

B. The Quinhydrone Electrode 

Quinhydrone is a one to one compound formed by the union of quinone 

and hydroquinone. In 1904 Haber and Russ (IS) first established that 

quinone and hydroquinone formed an oxidation-reduction couple in which 

the hydrogen ion was involved. Biilmann (2), seventeen years later, real­

ized the potentialities of this discovery and applied the quinhydrone 

electrode to the determination of the concentration of hydrogen ion. 

During the next quarter of a century the quinhydrone electrode was widely 

used for determination of pH. 

The theory and operation of the quinhydrone electrode is based on 

the reaction: 

(2.1) Q + 2H+ + 2e- ^ 

in which Q and HaQ represent quinone and hydroquinone, respectively. 

The potential of this half-cell is given by the equation 

(2.2) E = E° + log ^ at 25" 

in which E° is the standard reduction potential of the quinone-hydro-

quinone couple. The equation may be rearranged to 

(2.3) E = E° + log + 0.059 log [H+]. 

The potential of a platinum electrode dipping into the solution, 

measured against a reference electrode, thus varies directly with the 

logarithm of the hydrogen ion concentration. 
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The quinhydrone electrode was used extensively for over two decades 

for the measurement of pH. As the complicated electronic instrumen­

tation necessary for the use of the glass electrode was evolved, the 

quinhydrone electrode was supplanted by the glass electrode for the rou­

tine measurement of pH. By 1950, use of the quinhydrone electrode had 

ceased. 

C. Chelate Rings 

A chelate ring compound is defined by Diehl as "a metal derivative 

of an organic compound in which the metal is attached to the organic 

molecule through two or more functional groups forming a ring or cage 

structure" (10). The term "ligand" is used to designate the organic 

(or other) radical or compound uniting with a metal atom. The term 

"chelate", according to Diehl (9) is derived from "chela", a Greek word 

referring to the claw of a lobster and appropriately it carries with it 

the connotation not only of ring structure but of firmness of binding 

and of stability. 

In the classification of chelate-ring compounds by Diehl (9), 

ligands are grouped according to the number of sites available for 

attachment to the metal: thus, unidentate, literally one-toothed; 

bidentate; tridentate; quadridentate; and sexadentate. The elements 

through which attachments are made are commonly nitrogen, oxygen and 

sulfur. These elements are usually incorporated in some functional group, 

such as the carboxy, hydroxy, amino, and thiol groups. The ligands are 

further classified according to the functional groups present. The groups 

may be acidic or basic; the acid groups are -COOH, -OH, =NOH, -SO3H, -SH 
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and the basic groups, -NHa, =N-, =0, =NOH. The acidic groups lose a 

proton on union with a metal atom. Chelate rings may be formed by ligands 

bearing any combination of acidic and basic groups. The charge on the 

chelate formed is determined by the original charge on the free metal 

ion and the number of protons displaced from the ligands which become 

attached. 

Chelate rings form chiefly when the positions of the functional 

groups in the ligand are such that five or six-membered rings are formed 

with the metal atom. Four and s even-memb e red chelate-ring compounds are 

known but the strains in such rings reduce the stability of the compounds. 

Higher stability is obtained as the number of attachments per ligand 

increases. A striking example of this is the calcium derivative of 

ethylenediaminetetraacetic acid; normally calcium does not form coordin­

ation compounds but with ethylenediaminetetraacetic acid, a sexadentate 

ligand, calcium unites through the formation of six bonds forming a highly 

stable compound. 

An application of chelate-ring formation has expanded analytical 

chemistry in the field of metallochromic indicators by the introduction 

of a me thyleneimino diacetic acid group, -CH2N(CH2C00H)2 (half of the 

ethylenediaminetetracetic acid molecule), into an acid-base indicator. The 

initial work of Schwarzenbach, Anderegg and Sallman (37) in this field led 

to the very useful indicators xylenol orange (21) and Calcein (11). Calcein 

proved to be an especially useful extension of the concept for in it the 

acid-base indicator and chelating functions are combined with fluorescence 

and, as the first metallofluorometric indicator, it has found wide use (8) 

in the EDTA titration of, and more recently the direct fluorometric determi-
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nation of calcium in the presence of magnesium. 

While there are no reports in the literature dealing with a quin-

hydrone oxidation-reduction system in equilibrium with metal ions, it was 

thought that this condition might be realized if the function of chelation 

(through the introduction of iminodiacetic acid into the molecules) were 

added to the couple. Such a system might then provide a potentiometric 

method for the direct determination of metal ion concentrations. 
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III. l,A-DIHYDROXYPHENYL-2-METHYLENEIMINODIACETIC ACID (H2QMIDA) 

A. Introduction 

1,4-Dihydroxyphenylinethyleneiminodiacetic acid (H2QMIDA) was first 

prepared by Pietrzykowski (30) at Iowa State University. The material was 

evidently not pure. Because of the difficulty encountered in working with 

the compound, Pietrzykowski did little beyond measuring a few physical 

constants. The first efforts in the present work were directed toward 

perfecting the synthesis and purification of the material (5). 

The problems presented in the synthesis and purification of H2QMIDA 

arise from the instability of the free acid at high pH and at elevated 

temperature. Purification yielded a product for which the equivalent 

weights as determined by neutralization and by oxidation differed by only 

about 1 per cent. Because further purification could not be effected, the 

material was used in a study of the physical and chemical properties. The 

infrared, ultraviolet, and PMR absorption spectra were obtained, and the 

behavior on titration with alkali, alone and in the presence of calcium 

and magnesium, was investigated (5). 

In the work being described in this thesis, further study was made of 

K2QMIDA, particularly the conversion of it to l,4-quinone-2-niethylene-

iminodiacetic acid (QMIDA) and a study of the QMIDA-H2QMIDA system in the 

absence and presence of metal ions. 

H2QMIDA proved to be fluorescent and the fluorescence as affected by 

the presence of calcium was studied (Section B, 1). 

Oxidation of H2QMIDA to QMIDA by controlled anode potential was 

undertaken (Section B. 2). Such a process had already been reported by 
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Santhanam and Krishnan (35) for the quinone-hydroquinone system. Several 

different anodes were used. 

Really successful oxidation, however, was obtained only by using 

chemical oxidizing agents, a number of which were tried. 

B. Experimental Work 

1. Fluorescence of H2QMIDA with calcium and magnesium 

A stock solution of H2QMIDA, 3.00 x 10"^ M in concentration, in 0.1 M 

potassium chloride was prepared. Solutions of calcium and magnesium were 

prepared by dissolving 2.205 g. of calcium chloride dihydrate and 3.050 g. 

of magnesium chloride hexahydrate in 0.1 M potassium chloride and diluting 

to exactly 250 ml. with 0.1 M potassium chloride. The resulting solutions 

were 0.0600 M in metal ion. All buffer solutions were 0.1 M in the re­

spective buffer as well as 0,1 M in potassium chloride. The buffer systems 

used were: pH 1-2.8, potassium chloride-hydrochloric acid; pH 2.8-7.0 

citric acid-potassium hydroxide; 7.0-12.0 boric acid-potassium hydroxide; 

pH 12-13 potassium chloride-potsssium hydroxide. None exhibited any 

fluorescence in the region studied. All solutions of pH 7 or greater were 

deaerated with nitrogen and measured immediately after the buffer was 

added. 

The solutions were prepared as follows: to 10.00 ml. of the stock 

H2QMIDA solution in a 25-ml. volumetric flask was added 5.00 ml. of the 

desired 0.600 M metal solution and enough buffer of the appropriate pH to 

give a volume of exactly 25 ml. The resulting solutions were 1.20 x 10"^ 

M in H2QMIDA and the ones with metal ions added had a tenfold excess of 
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the metal. 

The fluorescence was measured using an Aminco-Bowman spectrophoto-

fluorometer. Both frontal (reflectance) and right angle fluorescence 

measurements were obtained for comparison. "Blank" runs were made using 

the respective buffer and metal solutions without H2QMIDA. Both excita­

tion and emission spectra were obtained. The emission spectrum was ob­

tained using light of 292 nm. for excitation and the spectrum was ob­

tained over the region 250 to 400 nm. The fluorescence of H2QMIDA from 

pH 1 to 13 with and without calcium and magnesium present is shown in 

Figure 3. 

2. Electrochemical oxidation of H2QMIDA 

a. Apparatus and solutions A three-electrode polarographic unit 

constructed from operational amplifiers was used for the rapid scan 

polarography (cyclic voltametry) of H^QMIDA. The construction of the 

circuit and mercury-pool electrolysis cell used are shown in Figure 1. In 

this circuit a standard fiber-tip calomel reference electrode was used to 

measure the potential of the working electrode directly at the surface. 

In this way the voltage error arising from the cell resistance, inherent 

in a normal polarographic circuit, is avoided. Because of the high in­

put resistance of the operational amplifier circuit, negligible current 

flowed through the reference electrode. A counter electrode, consisting 

of a spiral of platinum wire separated from the main solution by a glass 

frit, was used. 

A Leeds and Northrup #62200 Type E Electrochemograph was also used in 
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and a mercury-pool electrode 
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later experiments. The electrolysis cell used was a Sargent #29392 

two-piece polarographic vessel. This cell is provided with a stopcock at 

the bottom and a removable calomel reference cell connected by a 19/38 

standard-taper glass joint with a porous glass frit, Figure 2. An add­

itional side-arm tube was added near the top of the polarographic cell 

so that nitrogen could be passed over the solution after it had been de-

aerated . 

Several types of working anodes were tried in the course of the 

study. A standard dropping mercury electrode (DME) was first used. This 

electrode was constructed in the normal manner using triply distilled 

mercury. 

Next, a mercury pool also shown in Figure 1 was used to provide 

a higher sensitivity at low concentrations and sufficient capacity for 

small-scale preparative work. The nitrogen inlet tube was adjustable so 

that nitrogen could be passed over the solution, or if stirring was de­

sired, bubbled through the mercury or the solution. 

A platinum working electrode was also tried. This was constructed 

by sealing a piece of platinum wire in a soft glass tube and filling it 

with mercury to make electrical contact, A gold electrode was construc­

ted similarly. In both electrodes about 1 cm. of wire extended into the 

solution. 

A graphite working electrode was prepared using Ultracarbon 101-U 

spectroscopy electrode graphite. This was sealed into a glass tube, 9 mm. 

in diameter, with paraffin (17). The end of the electrode was cleaned by 

rubbing it against fine sandpaper. Electrical contact was made by filling 
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the tube with mercury. 

Buffer solutions were all 0.1 M and prepared from the respective 

reagent-grade chemical and deionized water. The pH was determined with a 

Corning Model 10 pH meter using a Sargent #30070-10 miniature combination 

electrode that was standardized against Fisher Certified buffers. The 

accuracy of each lot of the Fisher buffers was checked by comparing them 

to freshly prepared NBS buffer solutions . 

b. Procedure The typical procedure for a voltametric scan of 

HjQMIDA is given below. In later work many of the variables in the system 

were changed one by one, pH, buffers, electrodes, and supporting electro­

lyte. The changes and the effects obtained are reported in the Results 

and Discussion section below and only the basic procedure will be given 

here. 

The polarography of H2QMIDA was investigated in an acetate buffer-

supporting electrolyte using the instruments described above. The buffer-

supporting electrolyte was 0.1 M and the H2QMIDA approximately 10"^ to 

10"^ M. The solutions of HjQMIDA were always freshly prepared unless 

noted differently. The solutions were deaerated with prepurified tank 

nitrogen. The voltage scan was normally from -0.5 to +0.6 volts vs. s.c.e. 

and the 100 microamp current range used. No cell resistance correction 

was made in the work done with the Leeds and Northrup instrument. 

3. Potentiometric titration of H2QMIDA with oxidizing agents 

a. Apparatus and solutions A Corning Model 10 pH Meter was used 

in these experiments. The electrode system consisted of a #47060 Corning 
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Platinum Inlay Electrode and a #476010 Sleeve-type Calomel Reference 

Electrode. A 150 ml. beaker, open to the air, was used as the titration 

cell. The solutions were stirred with a rotating bar magnet. All solu­

tions were prepared using deionized water. 

A 1 N solution of sulfuric acid was prepared by adding 28 ml. of 

concentrated reagent sulfuric acid per liter of deionized water. Sodium 

acetate-acetic acid buffer of pH 5.5 was prepared by mixing 0.1 M stock 

solutions of the respective compounds until the desired pH was attained. 

A 10 ml. buret was used for the titrations and the sample size of 

HaQMIDA was made so that the end-point should occur when about 7 ml. of 

0.1 N titrant was added. 

b. Oxidation of HaQMIDA with potassium dichromate A 0.100 N 

solution of potassium dichromate was prepared by dissolving 0.475 g. of 

the reagent salt in 1 N sulfuric acid and diluting to 100 ml. Exactly 

0.0897 g. of HaQMIDA was added to 100 ml. of 1 N sulfuric acid and 

stirred for 10 minutes before titration. The titration proceeded smoothly. 

Figure 5, with all the solid dissolving by the time 7 ml. of titrant were 

added. 

A second sample of 0.1 g. of HaQMIDA was added to 60 ml. of 0.1 M 

sodium acetate-acetic acid buffer of pH 5.5 and stirred until all the solid 

material had dissolved. Small crystals of potassium dichromate were 

slowly added and the potential of the solution was monitored. 

c. Oxidation of HaQMIDA with cerium(IV) A 0.100 N solution of 

cerium(IV) was prepared by dissolving 6.311 g. of eerie ammonium sulfate 

dihydrate in 1 N sulfuric acid and diluting to 100 ml. Exactly 0.0897 g. 
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of H2QMIDA was added to 60 ml. of 1 N sulfuric acid and stirred for ten 

minutes before titration. The suspension of the partially dissolved 

H2QMIDA was then titrated with 0.100 N cerium(IV). The titration proceeded 

smoothly until the theoretical end-point region was reached, Figure 6. 

A second sample of 0.1 g. of H2QMIDA was added to 60 ml. of 0.1 M, 

pH 5.5, sodium acetate-acetic acid buffer and stirred until all of the 

solid had dissolved. Crystals of eerie ammonium sulphate dihydrate were 

slowly added to the solution and the potential reading obtained. 

d. Oxidation of HgQMIDA with potassium molybdicyanide Potassium 

molybdicyanide which is somewhat unstable in aqueous solution was pre­

pared using the procedure of Kratochvil and Diehl (22). Potassium mo-

lybdocyanide was oxidized in slightly acidic solution by use of lead 

dioxide. The excess lead dioxide and lead sulfate formed in the reaction 

was filtered off and the potassium molybdicyanide filtrate stored in the 

dark. Anhydrous cobalt sulfate, stored over magnesium perchlorate, was 

used to standardize the potassium molybdicyanide by potentiometric titra­

tion of the molybdenura(V) in ammonium citrate-ammonium hydroxide solution 

with the 0.100 N cobalt(II) solution. 

Exactly 0.417 g. of H2QMIDA was added to 60 ml. of a 0.1 N 

solution of sulfuric acid and stirred for ten minutes. The titration with 

potassium molybdicyanide was then followed potentiometrically. 

A second sample, 0.0420 g., of H2QMIDA was added to 60 ml. of 0.1 M 

sodium acetate-acetic acid buffer, pH 5.5, and stirred until all the solid 

material had dissolved. The H2QMIDA was titrated as above using the same 
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0.015 N potassium molybdicyanide solution. 

e. Oxidation of H2QMIDA with periodic acid A 0.100 N solution 

of periodic acid (assuming a two-electron reduction) was prepared by 

dissolving 1.1398 g. of the reagent acid in deionized water and diluting 

to 100 ml. Exactly 0.0897 g. of H2QMIDA was added to 60 ml. of IN 

sulfuric acid and stirred ten minutes before titration. The suspension of 

the partially dissolved HjQMIDA was then titrated with the 0.100 N 

periodic acid solution. All of the solid HgQMIDA was apparently dissolved 

at the point at which 4.00 ml. had been added. 

A second sample of H2QMIDA, 0.0899 g., was added to 60 ml. of 0.1 M 

sodium acetate-acetic acid buffer, pH 5.5, and stirred until all of the 

solid material had dissolved. The H2QMIDA was titrated as above with 

the same 0.100 N periodic acid solution. 

f. Oxidation of HgQMIDA with potassium permanganate A 0.020 M 

solution of potassium permanganate was prepared by dissolving 0.3252 g. 

of the reagent salt in deionized water and diluting to 100 ml. For a 

five-electron reduction the permanganate solution would' then be 0.100 N; 

for a three electron reduction, 0.060 N. 

Exactly 0.0897 g. of H2QMIDA was added to 60 ml. of 0.1 M boric 

acid-potassium hydroxide buffer, pH 8.1. Nitrogen was bubbled through 

the solution to remove atmospheric oxygen and the mixture was stirred 

until all the solid had dissolved. A small amount of 0.1 M potassium 

hydroxide was added after the acid had dissolved to raise the pH of the 

solution back to 8.0. The solution was then titrated with potassium 
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permanganate in the absence of air, the reaction being followed potentio-

metrically. 

A second sample of H2QMIDA, weighing 0.0898 g., was dissolved in 

60 ml. of 0.1 M acetic acid-sodium acetate buffer, pH 5.5, and titrated 

in the same manner as above, except without deaeration. 

A third sample of HjQMIDA, weighing 0.0896 g., was added to 60 ml. 

of 1 N sulfuric acid solution and stirred for ten minutes. The solution 

was then titrated as above with the same 0.020 M potassium permanganate. 

The remaining solid H2QMIDA dissolved slowly as the titration proceeded. 

C. Results and Discussion 

1. Fluorescence of H2QMIDA with calcium and magnesium 

The fluorescence spectra of 1.2 x 10"^ M H2QMIDA, and H2QMIDA in 

the presence of a tenfold excess of calcium and magnesium were obtained 

at pH values from 1 to 13, Figure 3. The pH of the respective measure­

ments was chosen from the neutralization titration curves determined 

earlier (5, p. 61). In this way fewer solutions were needed and the pH 

could be selected at which each of the various molecular species, H4A, 

HaA", H2A~^, HA~2, was at maximum concentration. 

The absorption maximum of H2QMIDA in the ultraviolet spectrum was 

found to be at 297 nm. However, it was found that if the net fluor­

escence (total fluorescence minus the "blank") was considered the opt-

timum excitation wavelength was 292 nm. This resulted from a broad 

Rayleigh scatter band in the spectrum of the blank. The decrease in 
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Figure 3. Relative fluorescence of H2QMIDA, Ca-H2QMIDA and Mg-H2QMIDA 
as a function of pH 

Àex 292 nm.; Xem 352 nm. 

O H2QMIDA alone 

• + Ca^ (tenfold excess) 

A+ Mg"*"*" (tenfold excess) 
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the excitation wavelength did not appreciably decrease or shift the 

maximum in the fluorescence emission spectrum. 

Only one band, maximum at 352 nm., was present in the fluorescence 

emission spectrum of free H2QMIDA and H2QMIDA in the presence of calcium 

and magnesium, Figure 3. 

As will be seen from the spectra shown in Figure 3, free H2QMIDA 

and the nondissociated Mg-HzQMIDA derivative exhibit a rather low fluor­

escence, the intensity being little changed with pH. The fluorescence 

of the Ca-HaQMIDA compound at pH 7 is eightfold greater. At pH 7 a 

neutral Ca-HaQMIDA species is present. Between pH 7 and 10 this species 

is changed to the Ca-H2QMIDA~ ion by the removal of the third replaceable 

hydrogen atom of H2QMIDA, the intensity of the fluorescence decreasing 

during the conversion. 

Additional work was done on the fluorescence of Ca-H2QMIDA to 

optimize resolution and sensitivity. Frontal fluorescence measurements 

were found to produce less light scattering and were best suited to the 

relatively high concentration (1.2 x 10"^ M) of H2QMIDA used. Right 

angle fluorescence was better at lower concentrations. Several filters 

were used in an effort to decrease noise and scatter, but with little 

success. The Aminco-Bowman spectrophotofluorometer used is a single 

beam, uncorrected instrument, that is, the intensity of the light de­

livered to the cell containing the solution varies with wavelength in 

accord with the variation in output of the xenon lamp used. Further 

work in this area would not be profitable unless an instrument with a 

constant light flux is used and "corrected" spectra obtained. 
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2. Electrochemical oxidation of H2QMIDA 

a. Preliminary study Three solutions of 5 x 10"^ M HjQMIDA at 

pH 2, 6 and 10 were prepared and deaerated. A polarogram of each was 

obtained from -0.5 to +0.3 volts vs. s.c.e. Using the same dropping merc­

ury electrode, a quick (about 1 second) cyclic scan over the same voltage 

range was made on a hanging mercury drop and the current observed. 

Only one oxidation wave was observed in the three polarograms. The 

wave shifted to a lower potential as the pH was increased, the half wave 

potentials being -0.01, -0.18 and -0.33 volts vs. s.c.e. at pH 2, 6 and 

10, respectively. The cyclic voltametry indicated that at pH 2, one 

product was formed in the oxidation and that this product was reduced on 

the reverse scan. At pH 6 the cyclic voltamogram indicated again that one 

oxidation product was formed and then reduced on the reverse scan, this 

time much more reversibility. At pH 10 there were three products formed 

in the oxidation process, only one of which was stable or reversible 

enough to be reduced on the reverse scan. 

The direction of the shift of the half wave potential with pH was 

that expected for H2QMIDA but much less than the 60 mv./pH observed with 

the quinhydrone system. The value of the half wave potential observed 

was also much lower than expected. At pH 6 the half wave potential was 

-0.8 volts vs. s.c.e. Pietrzykowski (30, p. 26) reported +0.13 volts 

vs. s.c.e. for the half wave potential of HaQMIDA at pH 6, and the formal 

potential of the quinhydrone system (on platinum) is reported as +0.10 

volts vs. s.c.e. (19, p. 1725) at pH 6. The formation of several un­

stable oxidation products in alkaline solution was also consistent with 
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the behavior expected for that of a substituted hydroquinone. The 

addition of calcium, magnesium and aluminum to the three solutions above 

resulted in no change in the oxidation potentials. 

Although the above work still seemed somewhat promising, later 

work proved that the oxidation observed was not the desired one, and in 

fact neither was the one observed by Pietrzykowski. Further purification 

of the H2QMIDA resulted in the disappearance of the observed oxidation 

wave, and Pietrzykowski does not report any purification in his work with 

the material (30). The most probable explanation of the wave obtained is 

that it was the oxidation of a readily formed decomposition product of the 

H2QMIDA or some impurity produced by a side reaction in the synthesis. 

This seems all the more probable when it is noted that the diffusion cur­

rent reported by Pietrzykowski for the oxidation of "H2QMIDA" is more than 

a factor of ten lower than the expected value (30, p.28). 

It must then be concluded that waves observed in the above work with 

a DME were not due to the desired two-electron oxidation of H2QMIDA to 

QMIDA. 

b. Mercury-pool and PME As was discussed in the preceding 

section, no oxidation waves of very pure H2QMIDA were found with mercury. 

No anodic current (other than the residual current) was observed until 

oxidation of the mercury began. A three-electrode polarograph and merc­

ury-pool electrode were constructed for a more exact study of the be­

havior of HaQMIDA toward a mercury anode. 

Chloride-free solutions of buffer and HjQMIDA were prepared so that 
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the maxiuum positive voltage could be obtained before mercury oxidation 

started. A cyclic scan of the entire range of voltages from hydrogen 

evolution to mercury oxidation was made using a fresh solution of HaQMIDA 

in acetate buffer of pH 5 over the mercury-pool (Figure 2), using the 

three-electrode polarograph assembly. No oxidation or reduction occurred 

between these regions. The acetate was replaced with citrate buffer and 

the scan repeated—no reaction. To assure that a fast decomposition was 

not deactivating the species, solid H2QMIDA was added to the deaerated 

buffer and scanned as it dissolved to insure that at least some fresh 

HaQMIDA would be present at the time of the scan. No oxidation or re­

duction was observed. The ultraviolet spectrum was found to be normal 

for HaQMIDA at this concentration. 

The above work was then repeated on the Leeds and Northrup instru­

ment with a DME, in hope that if the lack of oxidation was caused by 

some sort of surface poisoning of the mercury, that the continuously re­

newed surface of the DME would allow oxidation to occur. Again, after 

trying several different buffers (acetate, borate, citrate, phthlate) and 

pH's, no oxidation was observed except that of mercury at the upper limit. 

A scan of HaQMIDA was made without deaerating the solution and an oxygen 

reduction wave was observed. Solid HaQMIDA was dissolved without buffer 

present by slow addition of potassium hydroxide until the pH was 5. A 

scan of this unbuffered solution yielded no oxidation wave. Potassium 

nitrate was added as supporting electrolyte and no oxidation was obtained. 

In the event that the HaQMIDA might have undergone some change while 

being stored as a solid, a new batch of HaQMIDA was prepared and a sample 
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scanned immediately—no oxidation. The ultraviolet spectrum of this 

solution was normal, having the single strong absorption found at 297 nm. 

produced by H2QMIDA; the molar absorptivity was also unchanged, an indi­

cation that there were no observable changes in environment affecting the 

hydroquinone ring, which was the group that would undergo oxidation. 

Finally, a series of runs were made with all the variations des­

cribed above, but with all glassware first being boiled in perchloric 

acid and all solutions made up from triply-distilled conductivity water. 

A new batch of mercury was also obtained for the DME. In this way if any 

type of surfactant or contamination were in the water used or on the glass­

ware it would be eliminated. 

At pH 10 using borate buffer a very irreversible oxidation wave was 

obtained that started at -0.15 volts and increased very slowly until the 

mercury oxidation region at about +0.2 volts vs. s.c.e. However, it was 

found in earlier work that any reactions, such as oxidation, at pH 10 

produce only decomposition. All other work with the described "ultrapure" 

conditions yielded the same result—no oxidation. 

c. Platinum electrode A series of scans from -0.5 to +1.0 volts 

vs. s.c.e. were made on solutions of H2QMIDA using a platinum wire elec­

trode and the Leeds and Northrup polarograph. The scan was then reversed 

and run from +1.0 to -0.5 volts. Concentrations of 3 x 10"^ and 3 x 10"^ 

M H2QMIDA were used at pH 5 and 10. Acetate and borate buffer-supporting 

electrolytes were 0.1 M in concentration. "Blanks were obtained of the 

buffer solutions in each experiment before the H2QMIDA was added. Stir­

ring was provided by the nitrogen used for deaeration. 
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It was evident that no oxidation of H2QMIDA occurred at the platinum 

electrode. Several small, nonreproducible waves were observed; these 

were probably side reactions caused by the oxidation and reduction of 

platinum. 

In later work, the oxidation of H2QMIDA was again attempted using a 

platinum electrode but using a buffer of pH 4 of 0.1 M potassium acid 

phthalate. Using the general procedure described above a scan of 1.0 

volts vs. s.c.e. was made on the buffer and then repeated after H2QMIDA 

was added, Figure 4. In the scan of the buffer alone, only the wave for 

the oxidation of the platinum surface was observed, the wave falling be­

tween 0.4 to 0.8 volts. After H2QMIDA was added a greater anodic current 

was noted. The small wave at 0.2 volts could possibly be due to the 

oxidation of a trace of H2QMIDA because the formal potential for H2QMIDA 

at this pH is about 0.24 volts vs. s.c.e. In the wave starting at 0.4 

volts the oxidation of H2QMIDA, as is the oxidation of many other organic 

compounds, was catalytically enhanced by the formation of platinum oxide 

on the anode. Unfortunately, the oxidation was still very irreversible, 

ranging from 0.4 to more than 1 volt vs. s.c.e. Such irreversibility 

usually makes direct potentiometry involving the system very difficult 

and unreliable (cf. Section VII B. 3. b.). 

d. Gold electrode A gold wire electrode was prepared in the 

same manner as was the platinum electrode. All the work of the pre­

ceding section was repeated with the gold electrode substituted for plat­

inum. The blanks again showed small anomalous waves but in the scans of 

the solutions containing H2QMIDA no waves were observed that could be 
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Figure 4. Voltamogram of H2QMIDA using a platinum-s.c.e. electrode system 

A. Scan of 0.1 M buffer-supporting electrolyte 
of potassium acid phthalate; pH 4 

B. Scan of same solution after H2QMIDA was added 
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interpreted as the oxidation of HjQMIDA. 

e. Wax-impregnated graphite electrode Three solutions of 

H2QMIDA ranging from 3 x 10"^ to 3 x 10"^ M in concentration were pre­

pared in pH 5, 0.1 M, acetate buffer-supporting electrolyte. They were 

deaerated and scanned from -0.5 to +0.5 volts using a wax-impregnated 

graphite electrode and the Leeds and Northrup polarograph. Even with 

the wax covering all but the end of the electrode, the surface of the 

graphite was large enough to cause very high charging currents. Vig­

orous stirring, increasing the supporting electrolyte concentration, and 

use of the lowest concentration of HaQMIDA did not solve the problem and 

the current always became excessively large between -0.2 and +0.1 volts 

during a positive scan. The work was abandoned as offering no hope. 

f. Conclusions An irreversible oxidation wave was observed 

for H2QMIDA at a platinum electrode but the procedure offered little 

hope of successful oxidation on a large scale. Because of the irrevers­

ibility observed in the current-voltage curves of H2QMIDA it was con­

cluded that electrochemical oxidation is not a feasible method for the 

preparation of QMIDA. 

3. Potentiometric titration of H2QMIDA with oxidizing agents 

a. Oxidation of H2QMIDA with potassium dichromate The oxi­

dation of H2QMIDA with potassium dichromate was successful in 1 N 

sulfuric acid. A stoichiometric, two-electron oxidation was obtained 

yielding a stable product, presumably QMIDA. The details of the titra-
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tion are given below and the titration curve is shown in Figure 5. 

Initially the solution was colorless with some suspended HgQMIDA. 

After each addition of titrant the solution became yellow-orange in 

color and then a clear green (chromium(III) ion). Potential readings 

stabilized quickly, Figure 5. After the end-point, the unreduced di­

chromate produced a darkening of the green color. Any color attribut­

able to the desired QMIDA was masked by this dark green color. After 

two weeks the titrated solution had become slightly cloudy and was 

dark yellow-green in color. This small change in color was an indi­

cation that the oxidation product of H2QMIDA is fairly stable in the 

presence of excess potassium dichromate. 

The stability of the oxidation product in the presence of excess 

dichromate results from the small difference between the formal poten­

tials of the QMIDA-H2QMIDA and dichromate systems in 1 N sulfuric acid. 

It can be seen from Figure 5 that the formal potential of the dichromate 

0.74 volts vs. s.c.e. Potassium dichromate is apparently just strong 

enough to effect the two-electron oxidation of HzQMIDA to QMIDA but 

causes no further oxidation. Unfortunately, the very low solubility of 

H2QMIDA in this strongly acidic solution prevents any preparative-scale 

work but an even more serious problem would be the removal of the 

chromic ions introduced into the solution. 

At pH 5.5 no oxidation of H%QMIDA occurred on the addition of 

dichromate. The initial, clear, colorless solution of H2QMIDA took on 

the yellow color of the dichromate ion as the crystals of the potassium 

dichromate dissolved. The potential increased slowly from 140 mv. to 
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Figure 5. Titration of H2QMIDA with potassium dichromate in 
1 N sulfuric acid 

0.0897 g. of H2QMIDA; 0.100 N potassium dichromate 
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about 200 mv. and then remained constant as additional potassium di-

chromate was added. Both the color of the solution and the potential 

readings were indications that no oxidation had occurred. Twenty-four 

hours later the potential reading had decreased to 170 mv. and the 

solution was a clear, dark red. 

Although the formal potentials of both systems decrease with 

increasing pH, the larger pH dépendance of the dichromate couple makes 

potassium dichromate too weak an oxidant at pK 5.5 to effect the oxi­

dation of H^QMIDA. 

b. Oxidation of H3OMIDA with cerium(IV) The titration of 

H2QMIDA in 1 N sulfuric acid with cerium(IV) proceeded smoothly until 

the end-point was reached, Figure 6. At 70 per cent titrated about 99 

per cent of the sample had dissolved. The solution was completely clear 

at the 90 per cent titrated point. As the end-point was passed the po­

tential readings became unstable and decreased rather quickly after each 

addition of cerium(IV). Finally, as the 200 per cent point was approached, 

readings were again fairly stable, as a result of the large excess of 

titrant now present. After standing for twenty-four hours the potential 

had dropped slightly from 1116 mv. to 1090 mv. Two weeks later the 

originally yellow-orange solution had darkened to a clear amber solution. 

Apparently in this experiment, the initial oxidation product in 

the titration was oxidized further by the first excess of cerium(IV). 

The secondary oxidation most likely was further oxidation of the quin-

one to open the ring. Ring-opening (possibly caused by chelation of 
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Figure 6. Titration of H2QMIDA with cerium(IV) in 1 N sulfuric acid 

0.0897 g. of H2QMIDA; 0.100 N cerium(IV) 
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cerium(IV), cf. Section VII) would also account for the lack of the 

usual dark brown decomposition product often encountered in the oxidation 

of HaQMIDA. Such decomposition of substituted quinones usually pro­

duces polymeric humic acids (15; 16; 48), which have a characteristic 

brown color but which retain the aromatic quinone ring. 

The oxidation of the H2QMIDA with cerium(IV) at pH 5.5 was also un­

successful. The initial potential of 140 mv. increased slowly as 

cerium(IV) was added and finally leveled off at 360 mv. After a small 

amount of cerlum(IV) was added, a violet precipitate formed. Twenty-

four hours later the potential had dropped to 240 mv. and the solution 

was a very dark brown and the precipitate was still present. There was 

no evidence that the desired oxidation product could be obtained from 

this solution. 

c. Oxidation of H2QMIDA with potassium molybdicyanide Potas­

sium molybdicyanide is a moderately strong oxidizing agent prepared by 

the oxidation of the molybdocyanide in slightly acidic solution by lead 

dioxide. The reduction potential of the couple, molybdenum(V)-

molybdenum(IV), was reported as 0.73 volts vs. s.c.e., and is not affected 

by changes in pH (22). The molybdicyanide is somewhat unstable in aqueous 

solution and was standardized at the time it was used against a standard 

solution of cobalt(II) sulfate as described in Section III B. 3. d. 

Two titrations of H2QMIDA were made with the molybdenum(V), one in 

0.1 M sulfuric acid and a second in 0.1 M sodium acetate-acetic acid 

buffer of pH 5.5. No oxidation occurred in 0.1 M sulfuric acid but the 

H2QMIDA was successfully oxidized to QMIDA in the solution of pH 5.5. 
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The standardization of the molybdenuin(V) with cobalt (II) gave 

0.017 N for the concentration of molybdenum(V). This was appreciably 

below the concentration of 0.05 N reported by earlier workers (22). As 

a double check of the standard cobalt solution some of the cobalt sul­

fate was weighed out and the purity checked by electrodeposition of the 

metal (45, p. 614). The purity of the "anhydrous" cobalt sulfate as 

found by electrodeposition was 90.1 per cent. This would make the actual 

concentration of the molybdenum(V) about 0.015 N, still much lower than 

expected. It was later found that the problem was caused by the low 

purity of the potassium molybdocyanide starting material. Omission of 

the final dilution called for in the procedure used (22) resulted in 

consistent attainment of the desired concentration, 0.05 M (cf. Section 

VI), molybdicyanide. 

No oxidation of HaQMIDA was obtained in the titration by molyb­

denum (V) in 0.1 M sulfuric acid. As the H2QMIDA was titrated with the 

0.015 N molybdenum(V) in the 0.1 M sulfuric acid a slow increase from 

the initial potential of 423 mv. vs. s.c.e. was noted, but no inflection 

occurred. After 30 ml. of molybdenum(V) was added the potential had in­

creased uniformly to 501 mv. There was no color change in the yellow 

titrant solution and some solid H2QMIDA was still present in the titra­

tion cell, indicating that no reaction had occurred. 

The titration of HjQMIDA in buffer of pH 5.5 resulted in a one-

electron oxidation of H2QMIDA. Later work with more concentrated titrant 

produced the expected two-electron oxidation. The initial potential of 
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the solution of HaQMIDA at pH 5.5 was 199 mv. This decrease, compared 

to 423 mv. above, was representative of the expected decrease in reduc­

tion potential with an increase in pH. Potential readings were stable 

except in the end-point region (11 ± 1 ml.). In this region there was 

a sharp increase in potential as the titrant was added and then a slow 

decrease to the recorded value. Figure 7. The two hundred millivolt de­

crease in the reduction potential made oxidation by the molybdenum(V) 

possible at pH 5.5. However, the end-point at 11 ml. is evidence that 

the oxidation involved only one electron. The calculated equivalent 

weight for a normal two-electron oxidation of H2QMIDA is 127.6. The 

approximate equivalent weight calculated for this titration was 254 

(theoretical for a one-electron oxidation, 255.2). The formal potent­

ials of the two couples were 0.434 and 0.722 volts vs. N.H.E. for the 

H2QMIDA and potassium molybdicyanide, respectively. This small differ­

ence in potential combined with other chemical factors was apparently 

just enough to oxidize the H2QMIDA to the semiquinone radical: 

Such products are well known (29 ; 34 ; 44), but quite often only as 

intermediates. 

Using higher concentrations of molybdicyanide, 0.05 to 0.1 N a 

two-electron oxidation of H2QMIDA was observed. Except for the end-point, 

the titration curve for this oxidation did not differ significantly from 

Ô 

OH 
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Figure 7. Titration of H2QMIDA with potassium molybdicyanide 
in 0.1 N sulfuric acid 

0.0417 H2QMIDA; 0.015 N K3Mo(CN)8 
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that of the one-electron oxidation; it is shown in conjunction with the 

work of Section VI, Figure 13. 

Potassiym molybdicyanide is thus quite close to the chemical oxi­

dant desired for the preparation of QMIDA. It is apparently not power­

ful enough to oxidize HzQMIDA in strongly acid solution in which the re­

duction potential of the HgQMIDA is high, but the oxidation proceeds well 

in neutral solution. Fortunately, HaQMIDA (and QMIDA) is quite soluble 

in neutral solution. Secondly, the metal ion is securely chelated by the 

cyanide groups and does not form a non-dissociated species with H2QMIDA 

or with QMIDA. 

Two major drawbacks prevent the use of potassium molybdicyanide in 

preparative work of QMIDA. The large volumes of potassium molybdicyanide 

solution needed for the oxidation of even a reasonable amount of HzQMIDA 

virtually prevent recovery of any QMIDA. Also the strong absorption in 

the ultraviolet of the molybdocyanide ion completely obscures the 250 nm. 

region in which QMIDA absorbs and thus makes it impossible to confirm the 

presence of QMIDA as the specific product of the oxidation. 

Potassium molybdicyanide appears to be more useful for the study of 

H2QMIDA in the presence of metals than for a chemical method for the 

preparation of QMIDA. 

d. Oxidation of HzQMIDA with periodic acid Although periodic 

acid has been widely used for the systematic degradation of organic hy­

droxy compounds, it has been shown by Feifer et al. (12) that para-hy-

droquinone and derivatives of hydroquinones are oxidized to the respec­

tive quinones quite smoothly without breakage of bonds or ring-opening. 
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This anomalous oxidation by periodic acid proved to be the perfect non-

metallic, chemical method for the preparation of the QMIDA species. 

H2QMIDA was titrated with periodic acid in 1 N sulfuric acid and 

in sodium acetate-acetic acid buffer of pH 5,5. The titration in 1 N 

sulfuric acid produced a one-electron oxidation of the H2QMIDA. The work 

at pH 5.5, however, yielded a smooth two-electron oxidation of H2QMIDA 

to QMIDA. 

In the 1 N solution of sulfuric acid the potential increased sharp­

ly from the initial reading of 419 mv. to 500 mv. after 0.20 ml. of ti­

trant was added. From this point to the predicted end-point region there 

was an increase in potential after each addition of titrant and then a 

slow drift in the potential on standing. From the 0.20 ml. to 3.00 ml. 

mark the potential readings decreased at a rate of about 2 mv./min. 

occurring at 4.00 ml. At 4.00 ml. the suspended Hz QMIDA had completely 

dissolved. Above the 4.50 ml. point the potential readings were stable 

and remained in the low eight-hundreds. 

After 0.50 ml. of titrant had been added the originally clear, 

colorless solution developed a brown tinge. This faint brown slowly 

changed to a clear yellow throughout the remainder of the titration. 

The theoretical end-point (assuming a two-electron oxidation and 

a two-electron reduction) was at 7 ml. The estimated end-point from 

the data for this titration was around 4 ml. indicating a probable one-

electron oxidation of the H2QMIDA in 1 N sulfuric acid, or a possible 

(but unlikely) three or four electron reduction of the periodic acid. 

After standing for one week with the excess periodic acid no decompo­
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sition was observed. 

In the acetate buffer of pH 5.5 the initial potential of the HaQMIDA 

was more negative and oxidation was effected. After the first 0.50 ml. 

the potential stayed around 150 mv. increasing sharply after each addition 

of oxidant and drifting back to approximately the same value after several 

minutes. At the 6.00 ml. point the potential was about 300 mv. and 

stable. The end-point occurred at approximately 7 ml. and was marked by 

the absence of drift in the potential reading, 410 mv. Beyond the 7 ml. 

mark a slow increase in potential occurs after each addition of titrant. 

At the 200 per cent point the potential was 690 mv. vs. s.c.e. The 

solution remained clear throughout the titration with a light-orange 

color slowly developing as the reaction proceeded. 

Although the oxidation of H2QMIDA by periodic acid appears to be 

rather slow at pH 5.5, the reaction occurs as a two-electron process that 

yields an end-point at the calculated amount of periodate. The product, 

presumably QMIDA, is fairly stable in the presence of excess periodic 

acid, although after standing for a week the brown color of decomposition 

products was observed. However, the fact that periodic acid nondestruc-

tively oxidizes H2QMIDA in solution of pH 5.5 made further study of this 

reaction desirable. The solubility of the reduced form (and presumably 

also the oxidized form) is high enough at this pH for preparative scale 

work. 

e. Oxidation of H2QMIDA with potassium permanganate Potassium 

permanganate is a powerful chemical oxidant which has been widely used in 

the oxidation of organic materials. Although most permanganate oxidations 
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are destructive in nature, the unusual stability of H2QMIDA toward perio­

dic acid made investigation of the permanganate-HzQMIDA reaction worthy 

of study. The increased oxidizing power of permanganate in neutral and 

basic solution also made such study promising. 

Three titrations of H2QMIDA using potassium permanganate were per­

formed, in solutions of pH 8, 5.5 and 1 N sulfuric acid. The permanganate 

proved to be much too powerful of an oxidant in all three cases, however, 

and no end-points were observed. In fact, the permanganate oxidation of 

H2QMIDA was the most destructive oxidation observed in the present work, 

producing the usual brown decomposition products. So complete was the 

oxidation that only a clear, colorless solution remained. 

At pH 8 the potential of the colorless solution of H2QMIDA was 

+80 mv. As potassium permanganate was added it reacted instantly and the 

potential decreased. At the 6.00-ml. point the solution was brown and 

the potential -16 mv. Beyond the 6.00-ml. point the potential increased 

with each addition of potassium permanganate and then drifted lower upon 

standing. As more permanganate was added the solution became dark brown 

in color, eventually developing a purple tinge. No permanent potential 

reading above 100 mv. was ever obtained, even after 20 ml. of titrant 

(200 per cent excess) had been added. 

In the second tiLrati^n of pH 5.5, the solution of H2QMIDA was 

colorless and the initial potential 160 mv. As the potassium permangan­

ate struck the solution it turned colorless and the potential readings 

decreased. The minumum potential was +155 mv. at 3.00 ml. As more ti­

trant was added the color darkened from a yellow to a light and finally 
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dark brown. Beyond the 6.50-ml., manganese dioxide appeared briefly as 

the permanganate reacted, but then quickly disappeared. A check of pH at 

this point revealed that no change had occurred. As before, no end-point 

was found. The potential drifted back down to almost the initial reading 

after each addition of titrant. Here again, the potassium permanganate 

(and perhaps even the first reduction products, manganese dioxide and man­

ganese (III) ) , was breaking up the ring and further oxidizing the products. 

The third titration, in 1 N sulfuric acid, although more promising 

because potassium permanganate is a weaker oxidant in acid solution where­

as the H2QMIDA is harder to oxidize, was also unsuccessful. 

The initial potential of the suspension of HjQMIDA was 407 mv. 

The potential was stable and increased slightly with addition of ti­

trant. At the theoretical end-point, 7 ml., the reading was 442 mv., but 

no inflection was found. The solution was a clear, very pale yellow with 

some solid still present. With the addition of more titrant the color 

darkened slowly and at 20 ml. all of the solid had finally dissolved, but 

the potential remained about 450 mv. Even at the 40-ml. point, corre­

sponding to a large excess of titrant, the potassium permanganate reacted 

instantly. After three minutes the potential reading had decreased to 

420 mv. The addition of several crystals of potassium permanganate pro­

duced brief local high concentrations of the oxidant that deflected the 

meter up to 900 mv. for a second or two before the permanganate reacted. 

Then the color of the solution lightened and eventually, after the addition 

of more potassium permanganate crystals, the spluj^inn became per­

fectly clear and colorless. As the color of the permanganate disappeared 
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the potential readings decreased to 100 mv. No end-point or permanent 

excess of oxidant was observed after these additions of large amounts of 

excess potassium permanganate. 

Thus, it was found that potassium permanganate completely oxidized 

and degraded HaQMIDA in acid solution. This was, however, the first time 

that an oxidant was found which actually broke the HjQMIDA into such 

small fragments that the solution became completely colorless. Such high 

oxidizing power in acidic and basic solution proved potassium permanganate 

to be useless for the chemical preparation of QMIDA. 

f. Other chemical oxidants Two additional chemical oxidizing 

agents, sodium bismuthate and ferric tris-l,10-phenanthroline sulfate, 

were investigated and found to oxidize H2QMIDA but were unsatisfactory 

for other reasons. The procedures used were essentially the same as those 

given in Section III B., and the experimental procedures are not given. 

The first material was sodium bismuthate. Some of the powdered 

compound was added to a solution of H2QMIDA in 1 N sulfuric acid and pH 

5.5 buffer. No oxidation occurred in 1 N sulfuric acid. At pH 5.5 a 

degradative oxidation occurred making the solution a very dark brown and 

causing the measured potential to decrease as the H2QMIDA decomposed. 

Here again, as with cerium and dichromate, the oxidation produced a tri-

valent metal ion that would interfere in later work. 

Ferriin, ferric tris-1,10-phenanthroline, was prepared by oxidizing 

ferrous tris-1,10-phenanthroline in an 0.05 M solution, with chlorine gas 

or lead dioxide, in dilute sulfuric acid. Ferriin was found to oxidize 

H2QMIDA in 1 N sulfuric acid. A slow decrease in potential occurred after 
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each addition of ferriin but the method proved unacceptable because of the 

low solubility of the H2QMIDA under these conditions. At a higher pH the 

potential was stable up to the end-point was obtained. It was later 

found that ferriin was very unstable at pH 4-5.5 and reacted with the 

buffers used (potassium acid phthalate and sodium acetate-acetic acid). 

This was probably the main cause of drift as excess oxidant was added. 

g. Chemicals producing no detectable oxidation Four reagents, 

although widely employed in the oxidation of other organic compounds, pro­

duced no oxidation of H2QMIDA in 1 N sulfuric acid or in solutions of pH 

5.5: 1) hydrogen peroxide, approximately 0.1 N and 30 per cent; 2) 

ammonium persulfate with and without silver catalyst; 3) potassium 

chlorate; 4) ferric chloride. 



www.manaraa.com

51 

IV. l,4-QUIN0NE-2-METHYLENEIMIN0DIACETIC ACID (QMIDA) 

A. Procedure 

1. Periodate oxidation of HaQMIDA 

In a 400-ml. beaker was placed 150 ml. of deionized water and the 

electrodes, of a pH meter. Nitrogen was passed through the water. With 

vigorous mechanical stirring, small portions of HaQMIDA and of sodium hy­

droxide pellets were added. The HaQMIDA dissolved slowly and the addi­

tions of HaQMIDA and sodium hydroxide were carefully made so as to main­

tain the pH of the solution between 4.5 and 6.5. A total of 25.5 g. 

(0.10 mole) of HaQMIDA was added. The final solution was light pink in 

color, slightly turbid and of pH of 5.0. The solution was cooled in an 

ice bath to 5°. At this point the pH was 5.25 and the potential of a 

platinum electrode inserted in the solution 55 mv. versus the s.c.e. 

To this cold, vigorously stirred solution was slowly added 22.5 g. 

(0.104 mole) of finely ground sodium periodate. The solution darkened 

immediately as periodate was added while the pH decreased slowly, and 

the potential of the platinum electrode increased. As the equivalence 

point was approached the potential increased rapidly from 200 mv. to 

510 mv.- The final pH was 4.4 and the final temperature 5°. A precipi­

tate appeared toward the end of the oxidation. 

QMIDA was then precipitated and removed in three steps. Concen­

trated hydrochloric acid was added dropwise until the pH became 3.0. The 

yellow solid precipitated was filtered and the dark brown filtrate re-
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cooled, and more hydrochloric acid added until the pH became 2.8. The 

second precipitation was then filtered. Hydrochloric acid was again added 

to the filtrate until a pH of 2.0 was obtained. A final crop of solid 

was removed. The solids obtained were washed with cold, deionized water, 

air-dried and then dried in a vacuum desiccator over anhydrous magnesium 

perchlorate. The total yield was 35 g. of light-yellow material consist­

ing of QMIDA and sodium iodate. The first crop consisted of a mixture of 

QMIDA and sodium iodate, the second of QMIDA contaminated with some sodium 

iodate, the third of quite pure QMIDA. 

2. Separation of oxidation products on Sephadex column 

Dark brown oxidation products obtained in early preparations (lack­

ing the pH, deaeration, and temperature color described in the preceding 

section) were separated on a column of Sephadex G-10 dextran gel, the 

column being 1 cm. in diameter and 60 cm. tall. A solution of the pro­

duct in water was passed through the column and elution was made with 

water. These bands passed from the column, successively dark brown in 

color, wine-red in color and orange in color. 

As explained below these bands were respectively: 1) highly polym­

erized material essentially aliphatic in character, 2) polymeric, relative­

ly low molecular weight, unsaturated material, and 3) QMIDA. Sephadex 

is too expensive and the process too cumbersome to use on a preparative 

scale and the separation was used only to devise the final procedure 

given above which yields a product from which the polymeric material, 1) 

and 2) are absent. 
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B. Discussion 

1. Periodate oxidation and separation on a Sephadex column as £ guide to 

the nature of the oxidation products 

Although periodic acid is known to cause degradative oxidations of 

many organic materials, two papers were found describing the oxidation of 

hydroquinone to benzoquinone. Feifer and others (12) found that: "The 

phenols with para oriented hydroxy1 groups consumed less periodate than 

the members of the other two groups of polyhydric phenols. In the case 

of hydroquinone, only one mole of oxidant was consumed, and there was 

little further reaction." Alder and Magnusson (1) confirmed this, adding 

that hydroquinone is instantaneously oxidized by periodate to p-benzo-

quinone, which unlike o-benzoquinone, is stable in the presence of perio­

date. 

In the present work, the oxidation of H3QMIDA by periodic acid was 

first studied on a small scale, using a potentiometric titration, Section 

III B. 3. e. This work indicated that a stoichiometric two-electron oxi­

dation of H2QMIDA occurred if the periodic acid was added at pH 5.5, 

0 
CHa-C-OH 

CHj-N 

0 

OH 
/CH2-C-OH 

+ + le~ CHa-N 
^CHa-C-OH 

0 
II 

0 OH 

QMIDA HaQMIDA 

and that the product, presumably QMIDA, was quite stable in the presence 

of a small excess of periodic acid. 
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Early attempts to prepare QMIDA by the periodic acid oxidation of 

H2QMIDA were unsatisfactory. Final solutions and solid products ob­

tained on acidification were dark in color, although the ultraviolet 

spectra of the products revealed that some QMIDA was present. Separa­

tion of the dark oxidation products was effected by chromatography on a 

column of Sephadex G-10. The separations effected by chromatography on 

Sephadex are primarily on the basis of molecular weight and to a lesser 

extent on the basis of polarity. Until precise conditions for the oxi­

dation were established, the periodate oxidation of H2QMIDA yielded pro­

ducts which separated into three bands on Sephadex. Ultraviolet spectra 

were used in establishing the nature of these products, Figure 8. 

The first band was dark brown in color, characteristic of decompo­

sition products of HaQMIDA obtained in earlier work. No bands character­

istic of aromatic absorption were present in the ultraviolet spectrum. 

Because the brown material was the first to pass from the column, pre­

sumably it was of high molecular weight and consisted of polymeric mater­

ial produced by ring-opening and condensation (13; 36; 44). 

The second band was wine-red in color, and presumably of lower 

molecular weight. Weak absorption maxima at 230 and 500 nm. were present 

in the ultraviolet spectrum. H. Musso, in his chapter on phenolic coup­

ling (41; p. 81), states that periodate oxidation produces quinones, 

hydroquinones and other dimeric products arising from Dials-Aider react­

ions . Such dimeric and related products have been reported to have an 

absorbance maximum around 500 nm. (14; 16) but also to have another band 

at a wavelength equal to or greater than that of the monomeric quinone. 
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Figure 8. Ultraviolet absorption spectra of the three fractions obtained 
by passing crude QMIDA through Sephadex G-10 gel 

A. Brown band 

B. Wine-red band 

C. Orange band 
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The maximum in the absorbance of QMIDA falls at 246 irni. The 230 nm. ab­

sorption is therefore, too low to arise from an aromatic ring and must 

result from unsaturated acids (36) produced by ring-opening. That the 

wine-red band was eluted before the final, orange band indicated that it 

consisted of material of appreciably higher molecular weight than QMIDA. 

The third and final band from the Sephadex G-10 column was orange 

in color and proved to be QMIDA. A single strong absorption band, at 

246 nm., was observed in the ultraviolet spectrum. This agreed well with 

the wavelengths reported for benzoquinone and substituted benzoquinones, 

which range from 240 to 250 nm. (3; 42). 

2. Optimum conditions for the periodate oxidation of H2QMIDA 

By making semi-quantitative use of the column of Sephadex G-10, an 

acceptable procedure (given in Section A.) was developed for the oxida­

tion of H2QMIDA to QMIDA by periodic acid. 

The most critical factor in the oxidation proved to be the hydro­

gen ion concentration of the solution, the optimum pH being 5 to 5.5. At 

higher pH degradative oxidation is serious; at lower pH precipitation of 

QMIDA and H2QMIDA occurs. 

The oxidation-reduction potential of the QMIDA-H2QMIDA couple is 

pH dependent, the shift being 60 mv. in the negative direction for each 

decrease of one pH unit. The optimum potential for the periodate oxi­

dation occurs at pH 5 to 5.5 with a striking change in potential when 

two equivalents of periodate have been added per mole of H2QMIDA. 

Sodium periodate rather than periodic acid was finally used to 

minimize the amount of sodium hydroxide added during the oxidation and 
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thus, reducing the detrimental effects of local concentrations of the 

latter where it entered the solution. 

It proved essential to deareate the solution prior to and during the 

oxidation; otherwise decomposition of H2QMIDA occurred in the local re­

gions of high pH where pellets of sodium hydroxide entered the solution. 

More satisfactory results were obtained when the solution was cooled 

during the oxidation and the filtration steps. 

It was found that QMIDA is about fifty times as soluble as H2QMIDA 

(Section V). By starting the oxidation with a concentrated solution of 

H2QMIDA, dilution was minimized and the yield of QMIDA improved. The 

dissolution of H2QMIDA is very slow so the solution was not cooled until 

after all H2QMIDA had dissolved. 

Sodium periodate dissolves slowly and it proved best to grind the 

crystals to a fine powder. An excess of sodium periodate was avoided by 

employing the potentiometric end-point technique. An excess of periodate 

promoted decomposition of the QMIDA in the later purification procedure, 

Section V B. 2. 

The low solubility of sodium iodate (produced by the reduction of 

the periodate) proved to be a problem in later purification. Examin­

ation of the ultraviolet spectrum of each of the three precipitations 

revealed that the first precipitation yielded predominately sodium iodate 

and the last two mainly QMIDA. Therefore, only the material from the 

second and third precipitations was saved for purification. The calcu­

lated molar absorptivity of the various crops of QMIDA obtained are 

presented in Table 1. 



www.manaraa.com

59 

When appreciable amounts of sodium iodate-periodate were present 

when the product was being dried, noticeable decomposition of the QMIDA 

occurred. 
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V. PROPERTIES OF l,4-QUINONE-2-METHYLENEIMINODIACETIC ACID (QMIDA) 

A. Experimental Work 

1. Ultraviolet spectrum of QMIDA 

The ultraviolet absorption spectrum of QMIDA was obtained as 

follows. Three milligrams of QMIDA was dissolved in 100 ml. of 0.1 M 

sodium acetate-acetic acid buffer, pH 5.5, and scanned from 800 to 200 nm. 

using a Gary 14 Recording Spectrophotometer, 1-cm. silica cells, and the 

buffer solution alone as a reference. Representative data is presented 

in Table 1 of Section B. 2. 

2. Purification of QMIDA 

The QMIDA obtained in the second and third precipitations of the 

procedure given in Section IV was further purified. About 28 g. of 

crude QMIDA was added with stirring to 150 ml. of deionized water previ­

ously deareated with nitrogen and cooled to 2° in an ice bath. To this 

light tan mixture, pH 1.9, was added slowly concentrated sodium hydroxide 

(50 per cent by weight). The color darkened to brown as the solid dis­

solved. When the pH reached about 5 the solution was clear and some 

white solid which remained was quickly removed by filtration. The clear, 

dark brown solution was again cooled in ice. Concentrated hydrochloric 

acid was added dropwise until pH 2 was reached. After a short time pre­

cipitation began and more acid was added until the pH of the mixture was 

stable and between 1.8 and 2.0. The orange-brown slurry was filtered 

leaving a yellow precipitate which was then washed with small portions of 
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cold deionized water and air-dried. This procedure was used three times 

successively. The purity of the QMIDA obtained was determined by measur­

ing the absorbance in the ultraviolet, Table 1. 

3. Equivalent weight of QMIDA 

a. Neutralization To 30 ml. of deionized, deaerated water was 

added 0.4780 g. of QMIDA with stirring. After five minutes the mixture 

was titrated with 0.1022 N sodium hydroxide in a 50-ml. buret. There 

was a sharp increase followed by a slow decrease in the pH after each 

addition of base as more QMIDA dissolved. Readings were made one minute 

after each addition of base. The end-point was determined graphically 

and the titration curve is shown in Figure 9. 

b. Reduction To 40 ml. of 1 N sulfuric acid was added 44.25 mg. 

of QMIDA with stirring. The clear, amber solution was deaerated with 

nitrogen for the remainder of the work and was titrated with freshly pre­

pared titanous(III) chloride which was standardized before and after the 

titration. The titanous solution was prepared by diluting 8.3 ml. of 

20 per cent titanous chloride to 250 ml. and was standardized potentio-

metrically against a standard 0.1 N potassium dichromate solution ac­

cording to the procedure given by Vogel (45 p. 330). The potentials in 

both the standardization and equivalent weight titrations were deter­

mined using a platinum disk-s.c.e. electrode combination and a Corning 

Model 10 pH meter. The end-points were determined graphically and occurred 

at approximately 300 and 500 mv, vs. s.c.e. for the respective QMIDA-
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titanium (Figure 10) and dichromate-titanium systems. Because of the in­

stability of the titanous solution three samples of QMIDA, with alternate 

standardizations, were titrated and the average equivalent weight used. 

4. Melting point and contaminants 

a. Melting point The melting point of QMIDA was determined 

using a Thomas Koffer Micro Hot Stage assembly that had been calibrated 

using melting point standards. A small amount of QMIDA was finely ground, 

placed between two microscope slip covers and observed while the tempera­

ture was increased at a rate of approximately 6°/minute. 

b. Residue on ignition Residue on ignition was determined by 

heating a 0.495 g. sample of the purified QMIDA in a tared, previously 

ignited platinum crucible for 30 minutes over the full heat of a Fisher 

burner. Care and low heat were used during the initial charring of the 

material. 

c. Presence of hydrochloride A spatula tip of QMIDA was added 

to 1 ml. of deionized water and stirred. To this mixture was added 

several drops of 1 M silver nitrate solution. 

5. Proton magnetic resonance spectrum 

A proton magnetic resonance spectrum of QMIDA was obtained using a 

Hitachi Perkin-Elmer R-20B High Resolution NMR Spectrometer. Because of 

the insolubility or high reactivity of the compound in nonaqueous solvents 

the spectrum was obtained in deuterium oxide. Use of deuterium oxide was 
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used to increase the solubility of the QMIDA but it was necessary to add 

the two materials alternately to prevent decomposition at high pH. The 

final saturated QMIDA solution was maintained at pH 5 to 6. Sodium-3-

(trimethylsilyl)-propanesulfonate was used as the chemical shift standard. 

The spectrum of QMIDA, along with that of H2QMIDA, is shown in Figure 11. 

6. Infrared spectrum of QMIDA 

The infrared spectrum of QMIDA was obtained using the potassium 

bromide disk technique. A Perkin-Elmer Model 21 Infrared Spectrophoto­

meter was used. The calibration of the wavelength scale of the spectrum 

was checked at 6.243 microns using a polystyrene film. 

7. Solubility of QMIDA in solution 

The solubility of QMIDA was determined in deionized water and 0.1 M 

sulfuric acid. An excess of solid QMIDA (about 0.5 g.) was added to 10 

ml. of each solution in a 25-ml. conical flask. The mixtures were placed 

on a wrist-action shaker and mixed for 12 hours at 28°. Exactly 1.00 ml. 

of the supernatant liquid was diluted to 200 ml. in a volumetric flask and 

the ultraviolet spectrum obtained. The solubility was calculated using 

the molar absorptivity obtained in Section V B. 2. The pH of the equili­

brium solutions was measured. 

8. Stability of QMIDA in solution 

The stability of a solution of QMIDA was studied by changes in the 

ultraviolet spectrum. A sample of 23.0 mg. of QMIDA was dissolved and 
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diluted to 1 1. with deionized water. The solution was allowed to stand 

on the laboratory bench and several spectra were obtained at various times 

from 0.5 to 371 hours after preparation. Only the region from 400 to 200 

nm. was scanned. Selected spectra are summarized in Table 3. 

A similar sample of 25.7 mg. of QMIDA was dissolved and diluted to 

11. as above and stored in the dark. The results of the ultraviolet 

spectra of this solution are also given in Table 3. 

9. Attempted preparation of the quinhydrone of QMIDA and H2QMIDA 

Several attempts were made to prepare and isolate the quinhydrone 

of QMIDA and H2QMIDA. About 50 mg. of QMIDA were added to 1 ml. of de-

aerated water and 10 per cent sodium hydroxide added slowly to dissolve 

the sample. Then 50 mg. of H % QMIDA were added and dissolved similarly. 

An ultraviolet absorption spectrum of the solution was obtained. Con­

centrated hydrochloric acid was added slowly until the pH remained at 

1.8. A brownish-orange precipitate was removed and the ultraviolet ab­

sorption spectrum obtained of the filtrate and some- of the precipitate, 

after it had been redissolved. The entire above procedure was then re­

peated but the H2QMIDA dissolved first. Additional attempts to pre­

pare the quinhydrone, quite similar to those described above, were also 

made in acetone and ethanol. 
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B. Results and Discussion 

1. Ultraviolet spectrum of QMIDA 

An ultraviolet absorption spectrum of QMIDA was obtained at pH 5.5 

from 800 to 200 nm. A single absorption band at 246 nm. was observed. 

This band is attributed to the quinone portion of the molecule and is 

caused by a IT IT* (K-band) transition (38, p. 161). 

The absorption of many quinones is shifted bathochromically when 

the ring is substituted. The effects of substitution are quite complex 

and some substituted quinones have been reported that have the same ab­

sorption wavelength as the parent compound. There was no appreciable 

bathochromic shift (from the wavelength of maximum absorption of benzo-

quinone) observed for QMIDA as a result of substitution of the ring as 

there was with H a QMIDA (5, p. 42). The quantitative aspects of the 

QMIDA absorption are discussed in the next section in conjunction with the 

purification work. 

2. Purification of QMIDA 

The primary problem in the purification of QMIDA was the removal of 

the sodium iodate produced in the oxidation of HzQMIDA with sodium per-

iodate. The low solubilities of the two materials made a one-step separa­

tion impossible. It was found that in mixtures of water and acetone, and 

of water and ethanol the solubility of the sodium iodate was low enough 

to allow the removal of most of it. When the QMIDA was reprecipitated 

from these binary solvents, however, a great deal of decomposition, indi­
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cated by the dark brown material recovered, had occurred and overall 

purity had fallen. 

The procedure given involves the use of a simple acid-base repre-

cipitation in cold, deaerated water. These conditions caused a minimum 

of decomposition and it was found that if the QMIDA was dissolved quickly 

with base, some of the sodium iodate, which dissolved more slowly in the 

cold water, could be filtered off. In the second and third reprecipita-

tions no iodate remained, after the third reprecipitation virtually all 

of the sodium iodate had been removed. A small but constant decomposition 

of the QMIDA occurred during each reprecipitation; because of this only 

three reprecipitations were used. 

Appreciable decomposition occurred if the pH was too high during the 

recrystallization. Loss of QMIDA owing to hydrochloride formation was 

observed if the final pH was too low. The most expedient method to de­

termine the relative purities of the various QMIDA preparations was the 

calculation of the molar absorptivity of QMIDA obtained from the ultravio­

let absorption at 246 nm. Some of the values obtained are shown in Table 

1. 

The first data column is from one of the earlier preparations where 

periodic acid was still being used as the oxidant. The low purity of the 

dark brown material obtained is evidenced by the low value of the molar 

absorptivity. 

The other four samples were all prepared using sodium periodate as 

the oxidant. The first of these came from an unpurified batch of QMIDA 

that was precipitated in one step after oxidation; the major problem here 



www.manaraa.com

67 

Table 1. Molar absorptivity of various samples of QMIDA at 246 nm. 

Source HslO, 
NalOt oxdn. 

of QMIDA oxdn. 
unpurif. 

unpurif. 
1 pptn. 

unpurif. 
1st of 
3 pptns. 

unpurif. 
3rd of 
3 pptns. 

purif.& 

3x 

Weight/1, (mg.) 36 30.5 24.5 27.1 25.7 

[QMIDA]^ 1.4 1.20 0.97 1.07 1.01 

Absorbance (A) 1.40 1.65 0.18 1.70 1.66 

Molar 
absorptivity (E) 9000 13,700 1860 15,900 16,400 

^Purified QMIDA from large-scale preparation used in later work. 
Molar concentration x 10"^. 

was, therefore, the presence of some sodium iodate. The second sample was 

from the first precipitation of the recommended three-step process. The 

very low molar absorptivity confirms the presence of a large amount of 

sodium iodate in this sample. The third sample is from the last precipi­

tation of the three-step procedure and is quite pure even without any 

additional purification. The fourth sample in the sodium iodate oxidation 

was obtained from a large preparative-scale batch of QMIDA that was puri­

fied three times using the procedure given in this section. This is the 

material that was used in the remaining work whenever QMIDA was involved. 

Actually, a small amount of even purer QMIDA was obtained once in one 

of the small-scale experimental prpparations. This sample had a molar ab­
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sorptivity of 17,300 but was prepared at a lower concentration which re­

sulted in a large loss of QMIDA by solubility. Such a method would waste 

too much H2QMIDA if used on a large scale. Later work revealed that even 

though the molar absorptivity of the purified QMIDA was slightly lower, 

this should not cause any difficulty because some of the QMIDA had re­

verted to H2QMIDA during the purification process and there were not any 

appreciable amounts of foreign material present as might be feared. 

The molar absorptivity reported for pure quinone is around 22,000 

(3; 33). The effects of substitution on the molar absorptivity of qui­

none s cannot be predicted and it cannot be assumed that pure QMIDA would 

have a value this high. However, the order of magnitude is the same. 

3. Equivalent weight of QMIDA 

a. Neutralization The neutralization equivalent weight of the 

purified QMIDA was obtained by potentiometric titration. The titration • 

curve is shown in Figure 9. The end-point for the removal of the first 

acidic hydrogen atom occurred at 18.20 ml. This corresponds to an equiva­

lent weight of 257.0; calculated 254.2; 98 per cent purity. The best 

neutralization equivalent weight purity obtained in the earlier work with 

H2QMIDA was 98.2 per cent (5). A second, less distinct end-point occurred 

at about 36 ml. 

The mixture was orange at the beginning of the titration and at the 

point where the solution cleared, an orange-amber color. The color dark­

ened as the titration proceeded leaving a dark amber solution at the 40 ml. 

mark. At pH 9.5 the decomposition of the QMIDA became rapid enough to 
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Figure 9. Titration of QMIDA with sodium hydroxide 

0.4780 g. QMIDA; 0.1022 N sodium hydroxide 
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cause a decrease in the pH after each addition of base making further 

titration meaningless. 

The two hydrogen atoms removed in the titration were the number pre­

dicted from the structure proposed. The negative log of the acid dissoc­

iation constant, pKi, for the first hydrogen atom, that of the carboxylic 

acid, was 2.64 when read from Figure 9. This is probably slightly higher 

than the true value due to the low solubility of QMIDA (pKj for H2QMIDA 

was 2.01 (5, p. 50)). The pKa for QMIDA corresponds to the removal of the 

zwitter ion ammonium hydrogen and was 7.31. 

b. Reduction The reduction equivalent weight of purified QMIDA 

was obtained by potentiometric titration with titanous(III) chloride. 

Figure 10. Rather small samples were used because of the solubility limi­

tations , the H2QMIDA product of the reaction being of lower solubility 

than the QMIDA and causing drift in the end-point region at higher con­

centrations . 

The limiting factor was the instability of the solution of 

titanium(III) even though the titrant was deaerated. Using freshly pre­

pared titanous chloride and alternating between equivalent weight titra­

tions and standardization titrations the following results were obtained 

after the concentration of the titanium(III) was extrapolated back to the 

time of each equivalent weight titration: run 1) Eq. wt. 137, N = 

0.0495; run 2) 136, 0.0487; run 3) 138, 0.0465. The average equivalent 

weight found was 137, theoretical: 126.6; 92.4 per cent purity. However, 

this value of purity was thought to be acceptable because as was discussed 
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Figure 10. Titration of QMIDA with titanium(III) chloride in 1 N 
sulfuric acid 

44.26 mg. QMIDA; 0.0492 N Ti(III) 
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in Section 2, some of the QMIDA had reverted back to H2QMIDA in the puri­

fication process and would cause no difficulty in later work. 

4. Melting point and contaminants 

a. Melting point The behavior of QMIDA on heating was observed 

through a low power microscope. At 80° a slight darkening of the origi­

nally light yellow solid could be detected. The darkening slowly contin­

ued with heating along with a gradual collapse of the crystal structure. 

At 145° the darkening accelerated; the material was a dark brown by 155°. 

At 159° fusion to a brown liquid was observed, followed by a slow evo­

lution of gas (bubbles formed). Heating was continued to 250° with little 

change except for the occasional shifting of bubbles in the liquid. 

b. Residue on ignition The residue on ignition of a 0.495 g. 

sample of QMIDA was negligible, 0.1 mg., indicating no inorganic con­

taminants. However, it was found that fast heating of QMIDA caused 

fusion of the material followed by the rapid evolution of gas which caused 

the material to "foam" out of the crucible. 

c. Presence of hydrochloride The addition of excess silver ni­

trate gave a negative test for chloride indicating absence of hydrochlor­

ide. On standing overnight, a silver mirror formed on the inside of the 

test tube. This would indicate that oxidation of QMIDA or its decompo­

sition products had occurred as the silver was reduced. 
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5. Proton magnetic resonance spectrum 

A proton magnetic resonance spectrum of QMIDA was obtained in 

deuterium oxide. To facilitate a direct comparison, the spectrum of 

H2QMIDA was also obtained under similar conditions. The spectra are 

shown in Figure 11. The respective values of the chemical shifts are 

listed in Table 2. 

Table 2. Summary of proton magnetic resonance spectra of QMIDA and 
H2QMIDA in deuterium oxide 

Hydrogen QMIDA^ HaQMIDA^ 

atoms of 
(number) Chemical shift Integration*^ Chemical shift Integration^ 

Ring (3) 7.01 2.8 6.88 2.7 
7.11 
6.87d 

Methylene 4.39 2.0 4.38 2.0 
group (2) 

Acetic acid 3.92 4.0 3.81 4.0 
groups (4) 3.8ld 

Water 4.71 4.83 

spH approximately 4. 
^pH approximately 5. 
cAccuracy about ±0.1 hydrogen atom. 
dpeaks arising from impurity of H2QMIDA. 

Large peaks caused by water were observed in the spectra of both 

QMIDA and H2QMIDA; these result from a small amount of water in the deu­

terium oxide used and form proton exchange between the solvent and acidic 
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Figure 11. Proton magnetic resonance spectra of H2QMIDA and QMIDA 
in deuterium oxide 

A. Ring hydrogen atoms (3) 

B. Water peak 

C. Methylene hydrogen atoms (2) 

D. Acid group a-hydrogen atoms (4) 

E. Impurity (H2QMIDA) 
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hydrogen atoms of the molecules. The small difference in the position 

of the peak due to water between the two compounds results from a differ­

ence in pH and from a difference in concentration of the substances. The 

interpretation of the H2QMIDA spectrum was discussed in earlier work 

(5, pp. 37-41) and only the QMIDA spectrum will be discussed here. At­

tempts to obtain the spectrum of QMIDA in Ds-dimethyIsulfoxide failed 

because of a reaction with the solvent. The QMIDA was instantaneously 

reduced to H2QMIDA as it dissolved in De-dimethylsulfoxide. The band at 

297 nm. in the ultraviolet spectrum of the reaction product in Dg-di-

methylsulfoxide was identical with that of H2QMIDA. 

The spectra of QMIDA and H2QMIDA were quite similar, as expected. 

The peaks of the hydrogen atoms of the methylene group appear at the same 

position. The peaks of the hydrogen atoms of the acetic acid groups of 

QMIDA are downfield about 0.1 ppm. from those of HgQMIDA. No simple ex­

planation is offered to account for this shift but it possibly results 

from the effects of diamagnetic anisotropy on these hydrogen atoms which 

are near the aromatic ring. The effect of substitution of the ring was 

more pronounced in the QMIDA spectrum than in that of the H%QMIDA. A 

distinct doublet appears for the ring hydrogen atoms of QMIDA but a 

ragged singlet for H2QMIDA. This is a result of the lower aromatic!ty 

of the quinone ring. The 0.2 ppm. downfield shift of the aromatic pro­

tons in the QMIDA is predicted by the tables in Silverstein and Bassler 

when one considers the replacement of the hydroxyls in the ring with more 

deshielding carbonyl groups (38, pp. 117, 140). The smaller peak in the 

doublet of QMIDA results from the hydrogen atom in the 3 position and is 
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slightly further downfield because of the neighboring, electron-with­

drawing zwitter ion; the larger peak represents the 5 and 6 hydrogen 

atoms. 

The small peak at 6.87 (S) and the shoulder at 3.81 in the spec­

trum of QMIDA are the result of a small amount of impurity of HaQMIDA. 

The integration of the peak areas of the spectra agreed quite well 

with the values expected. As was found in the earlier spectra of H2QMIDA 

(5), the integration of the aromatic portion of the spectra was slightly 

low. 

6. Infrared spectrum of QMIDA 

The infrared spectrum of QMIDA was obtained using the potassium 

bromide disk technique. Because a detailed interpretation of the infrared 

spectrum of H2QMIDA was given in earlier work (5, pp. 29, 32-36) only the 

salient features of the spectrum of QMIDA will be discussed. 

The replacement of the two phenolic groups by carbonyl groups is 

reflected in the spectrum by a large relative decrease in the size of the 

hydroxyl bands at 3420 and 1212 cm~^, when compared to the earlier H2QMIDA 

spectrum. Conversely, the band assigned to the carbonyl symmetrical 

stretch, 1656 cm~^, was significantly larger. The bands at 1731 and 1602 

cm"l assigned to the carboxylate group remained about the same as would be 

expected because there was no change in the iminodiacetic acid portion of 

the molecule. Considerable change appeared in the low-frequency, aro­

matic region of the spectrum as a result of the change in the aromatic 

character of the ring. 
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7. Solubility of QMIDA in solution 

The solubility of QMIDA was determined in deionized water and in 

0.1 M sulfuric acid. The amount of QMIDA dissolved was determined by 

obtaining the ultraviolet spectrum of each sample and measuring the ab-

sorbance at 246 nm. The ultraviolet spectrum showed that some reduction 

of the QMIDA to HgQMIDA occurred while the samples were being dissolved. 

A sample of known concentration of QMIDA, with the same ratio of QMIDA to 

H2QMIDA (cf. next section) as in the sample, used for the solubility 

measurements, was used as a standard to calculate the exact solubility of 

the QMIDA. The values found for the solubility were: in deionized 

water, pH 2.20, 5.62 g./l.; in 0.1 M sulfuric acid, pH 1.38, 6.28 g./l. 

The increase in solubility in the more acidic solution is presumably 

caused by the protonation of the carboxylate ion of the molecule. The 

solubility of QMIDA is about fifty times greater than that of H2QMIDA at 

the same pH (5, p. 49). 

8. Stability of QMIDA in solution 

The stability of a solution of QMIDA was studied by following the 

change in the ultraviolet spectrum. Spectra of a 9.08 x 10"^ M solution 

were obtained from 0.5 to 371 hours after preparation. Selected spectra 

are shown in Figure 12 and the data from all of the spectra are listed in 

Table 3. 

As can be seen from the data, QMIDA decomposes on standing. The 

spectra of the product of the decomposition and that of H2QMIDA are 
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Figure 12. The ultraviolet absorption spectrum of a 9.08 x 10 ^ M 
solution of QMIDA 

A. 0.5 hours after preparation 

B. 96 hours after preparation 

C. 371 hours after preparation 
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Table 3. Decomposition of QMIDA in solution as a function of time 

Stored on bench-top; 9.08 x 10 ^ M QMIDA 

246 nm. %QMIDA^ ^297 nm. %H2QMIDAd 

0.5 1.47 99 0.06 18 

24 1.25 85 0.11 33 

96 0.70 47 0.19 58 

182 0 .28  19 0.28 85 

371 0.10 7 0.30 91 

Stored in the dark; 1.01 X 10-4 M QMIDA 

0.5 1.66 100 0.07 19 

360 0.46 28 0.29 79 

^Wavelength of maximum absorbance of QMIDA. 
bper cent of QMIDA based on calculation of absorbance expected for 

the given concentration of QMIDA using the molar absorptivity determined 
earlier (16,400). 

'^Wavelength of maximum absorbance of HaQMIDA. 
d^Per cent of H2QMIDA based on calculation of absorbance expected for 

a solution of HgQMIDA, equal in concentration to that of the original 
solution of QMIDA, using the molar absorptivity determined earlier (3630). 

identical, this the decomposition product is probably the reduced form of 

the couple, HzQMIDA. The formal reduction potential of QMIDA is about 

0.5 volts, too low to allow oxidation of water in this region (pH 5), 

which would result in a much faster decomposition. The actual mechanism 

of the decomposition is probably quite complex and not dependent on the 

usual electrochemical equilibrium considerations (see Section VII C. 2.) 

Elapsed time 
since preparation 
(hours) 
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because of the high irreversibility of the QMIDA-HaQMIDA system. 

The data. Table 3, is an indication that there is nearly quantitative 

conversion of QMIDA to H2QMIDA in the decomposition process in the pre­

sence of light. The two major limitations in the calculations shown in 

the table are: 1) it was assumed that there was no overlap of the ab­

sorption bands of QMIDA and H2QMIDA; 2) the molar absorptivity used for 

QMIDA was determined on a sample containing a small amount of H2QMIDA, 

thus the calculated per cent values are slightly higher than the true 

amount of QMIDA present. To a first approximation, however, these 

limitations are negligible and a smooth, semiquantitative change from 

QMIDA to H2QMIDA was observed. 

As found in the earlier studies of the stability of H2QMIDA 

(5, p. 58), the decomposition of QMIDA is accelerated by light. The 

ultraviolet spectra of a solution of QMIDA stored in the dark, Table 3, 

indicated that decomposition of the QMIDA to H2QMIDA occurs more slowly, 

in the dark, but apparently by a similar mechanism. 

The rapid decomposition of QMIDA by a different mechanism in the 

presence of aluminum is discussed in Section VII. 

9. Attempted preparation of the quinhydrone of QMIDA-H2QMIDA 

Several attempts were made to prepare and isolate the quinhydrone of 

QMIDA and H2QMIDA in selected solvents. In deaerated water solutions no 

difference was noted as a result of changes in the order of addition or 

dissolution of the QMIDA and H2QMIDA. The ultraviolet spectrum of the 

equimolar solutions of QMIDA-H2QMIDA was the same for all methods of pre­
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paration and contained no evidence of quinhydrone formation. After pre­

cipitation of the dissolved QMIDA-H2QMIDA with hydrochloric acid, the 

ultraviolet absorption spectrum of the filtrate contained a large band 

corresponding to that of QMIDA and a small inflection at the wavelength 

of absorption of H2QMIDA. This is the expected result considering the 

much higher solubility (Section 7) of QMIDA. The absorption spectrum of 

the precipitated material contained a large absorption band at the wave­

length of absorption of H2QMIDA and no band for QMIDA. Even if the quin­

hydrone were formed in solution, the large difference in solubility of 

the two materials is enough to prevent isolation of the quinhydrone by 

precipitation methods. The work in the solvents acetone and ethanol 

showed even less promise and was abandoned. 

Little data are available on the spectral properties of quinhy-

drones in solution. A statement to this effect by Moser and Cassidy (28) 

was confirmed by a search of the literature. The infrared absorption 

of quinhydrones have been reported by Brockmarm and Franck (4). Tsubomura 

(43), obtained the charge-transfer spectrum of quinhydrone and interpret­

ed it using molecular orbital calculations. 

Quinhydrone was reported to have one additional absorption band that 

is not observed in the spectra of benzoquinone and hydroquinone. This 

band occurs at 440 nm. and is not greatly shifted by changes in solvent 

(26). Water was found to promote quinhydrone formation and the highest 

molar absorptivity, 890, of the 440 nm. band was found in 0.05 M hydro­

chloric acid. No band was observed that could be interpreted as suggest­

ing any quinhydrone formation in the present work. 
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Noser and Cassldy (28) also found that substitution complicates the 

absorption spectra of quinhydrones. A simple system such as ethylquinhy-

drone was found to have two additional absorption bands, 360 and 450 nm., 

rather than the one described above for simple quinhydrone. Also, there 

are four possible preferred orientational isomers in the ethylquinhydrone 

system. Such complications in a relatively simple system imply that the 

absorption spectrum of the quinhydrone of QMIDA-H%QMIDA were it formed, 

would be readily detectable but difficult to interpret. 

In any case no evidence was found for the existence of a quinhydrone 

of QMIDA and H%QMIDA and perhaps in view of the large size of the 

methyleneiminodiacetic acid group the formation of one should not be ex­

pected. 
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VI. RESPONSE OF THE QMIDA-H2QMIDA COUPLE TO METALS 

A. Introduction 

The final phase of the present work was a determination of the be­

havior of the QMIDA-HaQMIDA system in the presence of metals, the ob­

jective being to devise a direct potentiometric method for the determin­

ation of a metal. 

In preliminary work it was found by potentiometric titration that 

the potential of H2QMIDA was altered by the presence of aluminum, but not 

by the presence of calcium or magnesium. 

In this work a more detailed investigation was made of the behavior 

of the QMIDA-HaQMIDA couple in the presence of metal ions. Samples of 

HaQMIDA were titrated potentiometrically, alone and in the presence of 

equimolar amounts of thirteen representative metal ions using sodium 

periodate and potassium molybdicyanide as the titrants. Aluminum, the 

metal ion which yielded the most promising results, was chosen for a 

more intensive study. Section VII. 

B. Experimental Work 

1. Potentiometric titration of HaQMIDA with sodium periodate in the 

presence of metal ions 

A sample of 100 ± 0.5 mg. of HaQMIDA (0.392 mmoles) was added to 25 

ml. of deionized water and the mixture deaerated with nitrogen. An ap­

propriate amount of metal salt was added to give an equimolar quantity of 

the desired metal ion. A solution of 10 per cent sodium hydroxide was , 
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added dropwise, with stirring, until the H2QMIDA dissolved and pH 6 to 

6.5 was maintained. The pH was measured with a Hach Chemical Company 

Model 2075 pH meter and the potential of the system with a Corning Model 

10 pH meter equipped with a platinum-s.c.e. electrode system. The solu­

tion was titrated with 0.0500 N sodium periodate (2.675 g./500 ml.) in 

a 25-ml. buret. The theoretical end-point was at 15.7 ml. The potential 

and pH of the solution were recorded after each addition of titrant up to 

the 25-ml. point. 

The first titration was performed without any metal ion present so 

that the formal potential of the QMIDA-H2QMIDA couple could be obtained 

under the same experimental conditions for reference. The decrease in pH 

that occurred during the titration made a second titration of pure HjQMIDA 

necessary. In this titration just enough titrant was added to reach the 

50-per cent point. Then the pH was varied from 3.5 to 6.5 and the poten­

tial recorded. The change in potential as a function of pH was plotted 

and the formal potentials of each titration corrected to pH 5.8 for com­

parison. The work was performed at room temperature, 29°. The results 

of the titrations are given in Table 4. 

2. Potentiometric titration of H2QMIDA with potassium molybdicyanide in 

the presence of metal ions 

The titration was handled as much like the periodate titration as was 

feasible. To 25 ml. of deionized water was added 100 ± 0.5 mg. of H2QMIDA 

(0.392 mmoles) and the mixture deaerated with nitrogen. An appropriate 

amount of the metal salt was added to give an equimolar quantity of the 
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desired metal ion. A solution of ten per cent sodium hydroxide was added 

dropwise, with stirring, until the HjQMIDA dissolved and a pH of approxi­

mately 6 was obtained. Measurements were made as described above and the 

titrant, potassium molybdicyanide, prepared and restandardized as was de­

scribed in Section III B. 2. d. The solution of molybdenum(V) was stand­

ardized before and after the titrations of the H2QMIDA. Correction of the 

formal potential of the couple to pH 5.8 was made as described above. The 

work was performed at room temperature, 25°. The results of the titra-r 

tions are given in Table 5. 

C. Results and Discussion 

1, Potentiometric titration of H2QMIDA with sodium periodate in the 

presence of metal ions 

The results of the titrations are summarized in Table 4. Of the 

thirteen metal ions used only three, aluminum, iron(III), and thorium(IV) 

produced a significant shift in the potential of the QMIDA-H2QMIDA couple. 

The potential of the QMIDA-H2QMIDA system alone was found to be 130 ± 5 

mv. vs. s.c.e. at pH 5.8. 

The rather high initial pH, 6 to 6.5, was used so that the titration 

could be made without further additions of sodium hydroxide. Because no 

buffer was present, the hydrogen ions produced in the oxidation caused a 

slow decrease in pH as the titration proceeded. The buffer was omitted to 

avoid possible preferential chelation of buffer (acetate) and metal. The 

change in potential of the couple as a function of pH at the mid-point of 
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Table 4. The effect of different metal ions on the formal potential of the QMIDA-H2QMIDA system 
during titration with 0.0500 N sodium periodate; 100 mg. H2QMIDA, equimolar amount 
of metal ion 

Formal 
Metal salt used Weight potential^ pH potential^ Remarks 

(mg .) (mv. ) (±0.05) (mv. ) 

135 5.70 130 
A1(N03)3«9H20 147 160^ 6.25 187 Turbid soin. 

Bi(NO3)3.5520 190 IO7C 6.30 137 Turbid soin. 
Ca(N03)2«4H20 93 115 6.05 130 Pos. drift past e.p. 
CraCSO^Da'^lOHaO 112 150 5.35 123 Turbid soin. 

CU(N03)2»3H20 95 60^ 7.00 132 pH Increased 
Fe(N03)3»9H20 158 136^ 6.60 184 
GdaOa 71 113d 5.65 104 Turbid past midpt. 
Pb(N03)2 130 80^ 6.60 128 pH incr.; turbid 
Mg(N03)2*6H20 100 92 6.20 116 

Ni(N03)2°6H20 110 83^ 6,70 137 pH incr. past midpt. 
Tl2(S0^)3*7Hrj0 161 — — — Tl+3 oxidizes H2QMIDA 
Th(N03)4'4H20 216 140d 6,65 191 White ppte. 
U02(N03)2*6H20 197 176d 5.10 134 Turbid soin. 

^Potential at pH given in mv. vs. s.c.e. 

bPotential in mv. vs. s.c.e. for solution of pH 5.8 calculated from mid-point potential. 

^End-point observed but the volume of titrant used was greater than theoretical; 
potential obtained at one-half of end-point value. 

^No end-point observed; potential obtained at theoretical mid-point. 
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the titration indicated that the change in potential per pH unit shift 

over the region pH 4-6 was 60 mv., the potential increasing as pH was de­

creased. This factor was used to correct all of the mid-point potentials 

to a common pH, 5.8; thus, comparison of the potentials were placed on 

the same basis. 

In titration in the presence of several metals the volume of titrant 

required was greater than the volume calculated, and sometime, no end-

point was observed; as shown later the latter was shown to result from a 

disproportionation (decomposition) of QMIDA. A detailed study of the dis-

proportionation of QMIDA following union with aluminum is given in Section 

VII. 

Only one metal, gadolinium, produced a significant decrease in the 

observed potential of the QMIDA-H2QMIDA couple. The decrease must be a 

result of the formation of a stable Gd-QMIDA compound with no (or little) 

union occurring between the gadolinium and H2QMIDA. 

The end-point in the titration with thallium(III) present occurred at 

25 per cent of the calculated volume of titrant. This was an indication 

that either incomplete oxidation of H % QMIDA was occurring or that prior 

oxidation by the thallium(III) might have occurred. The standard reduc­

tion potential of thallium(III)-thallium(I) is reported to be 1.25 volts 

vs N.H.E. (19, p. 1745). Undoubtedly HgQMIDA was being oxidized by thal-

lium(III). 

Further discussion of the respective small variations of each ti­

tration curve in this series of titrations is not pertinent to the sub­

sequent work reported in this thesis. Further discussion of the spe-
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cifics of the use of sodium periodate in the oxidation of HgQMIDA is 

given in Sections III and IV. A study paralleling the titration with per­

iodate described above, using molybdicyanide as the oxidant, is given in 

the following section. 

2. Potentiometric titration of HaQMIDA with potassium molybdicyanide in 

the presence of metal ions 

The results of these titrations are summarized in Table 5. Although 

Table 5. The effect of different metal ions on the formal potential of 

the QMIDA-H2QMIDA system during titration with 0.071 N potassium 

molybdicyanide; 100 mg. HaQMIDA, equimolar amount of metal ion 

Metal Mid-point Formal 
ion potential^ pH potential^ Remarks 
added3 (mv. ) (+0.05) (mv. ) 

— —  88 6.85 151 
Al+3 301 4.40 217 Turbid soin. 
Bi+3 .120 5.85 217 Turbid soin. 
Ca+2 162 5.50 146 
Cr+2 173 5.50 155 Some Cr+3 undissolved 

Cu+2 111 6.65 162 Colored species formed 
Fe+3 192 6.50 234 
Gd+3 170 6.15 191 — — — 

Pd+2 150 5.85 153 Turbid past midpt. 
Mg+2 132 6 . 3 0  162 — 

Ni+2 87 6.70 141 
TI+3 —— — Tl+3 oxidizes H2QMIDÂ 
Th+4 231 5.50 213 Turbid soin. 
U02+^ 203 6.10 221 Turbid, anomalous 

behavior vs. pH 

^Specific metal salt and amount given in Table 4. 
^Potential in mv. vs. s.c.e. obtained at theoretical mid-point. 
^Potential in mv. vs. s.c.e. at pH 5.8 as calculated from mid­

point potential. 
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the overall shifts in the potential of the QMIDA-HgQMIDA couple produced 

by aluminum, iron(III) and thorium(IV) were found to be quite similar to 

those found in the periodate titrations, several differences were noted 

with other metals. The potential of the QMIDA-H % QMIDA system alone was 

found to be 150 - 20 mv. vs. s.c.e. at pH 5.8. This was about 20 mv. 

higher than the potential found using sodium periodate. The larger range 

given for this potential is meant to reflect the wider variations found in 

potentials here, than obtained with the same metals in the periodate ti­

trations, Section 1. 

Because no buffer was used it was necessary to monitor the pH as the 

titration proceeded details are discussed in Section 1. The shift of the 

potential of the couple with pH was again found to be approximately 60 mv. 

per pH unit. As the end-point region was reached a drift in the potential 

in the negative direction occurred in most of the titrations. In these 

titrations the theoretical mid-point was used to determine the formal 

potential. 

Titration curves of HzQMIDA alone and with calcium, magnesium and 

aluminum present are shown in Figure 13. These titrations were performed 

in 0.1 M acetate buffer at pH 5.5 so that no correction of the potentials 

for variations in pH was required. The dilute sulfuric acid present in 

the solution of molybdicyanide caused a slow, but uniform, decrease in the 

pH of the solutions as the titrations proceeded. The titrations of Hz QMIDA 

and H2QMIDA plus equimolar amounts of magnesium were virtually ident­

ical when titrated with the molybdicyanide and are represented by one 

curve. The titration curve with calcium present differed from those 
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Figure 13. Titration of H2QMIDA with potassium molybdicyanide in acetate 
buffer of pH 5.5; no correction of potentials was made for 
variations in pH during the titration 

90 mg. H2QMIDA; 0.058 N K3Mo(CN)s 

O H2QMIDA; H2QMIDA plus equlmolar magnesium 

• H2QMIDA plus equimolar calcium 

A H2QMIDA plus equimolar aluminum 
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above only before the 40-per cent point. The curve in the presence of 

aluminum was displaced toward higher potential. More titrant was required 

to reach the end-point as a result of the disproportionation of the QMIDA 

produced in the oxidation. This disproportionation is described in de­

tail in Section VII. 

The marked differences in the titrations with molybdicyanide and with 

periodate were; 1) large shifts in the positive direction were found in 

the potential using the molybdicyanide as titrant when bismuth(III) and 

the uranyl ion were present; such shifts were not observed in the perio­

date titration. 2) A small increase in the potential was produced by the 

presence of gadolinium, which produced a decrease in the potential in the 

periodate titration. No further work was done to pinpoint the causes of 

such discrepancies, but reaction with the titrants, particularly the per­

iodate (and the iodate produced), is probably involved. No potentials 

significantly lower than that of the QMIDA-HzQMIDA couple alone were noted 

in this series of titrations. The addition of the thallium(III) again re­

sulted in oxidation of the H2QMIDA and is discussed in the preceding 

section, 

D. Conclusions 

Three metal ions were found which produced a significant increase in 

the formal potential of the QMIDA-H2QMIDA couple in the pH range 4-6: 

aluminum, iron and thorium. Of these aluminum was selected for further 

study because of the importance of this metal and because it has only one 

valence state. In Section VII is presented a detailed study of the 

effects of aluminum on the QMIDA-H2QMIDA system. 
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VII. THE INTERACTION OF THE QMIDA-H2QMIDA SYSTEM WITH ALUMINUM 

A. Experimental Work 

1, Potential of the QMIDA-H2QMIDA couple as a function of the concentra­

tion of aluminum added 

A solution containing 6.40 mg. of QMIDA and H2QMIDA was prepared by 

dissolving both compounds in one 50-ml. portion of 0.1 M sodium acetate-

acetic acid buffer, previously adjusted to pH 5.00. The resulting solu­

tion, 5.0 X 10"^ M (2.5 X 10"^ mmoles of each material) was placed in a 

100-ml. beaker and stirred with an air-driven magnetic stirrer. Nitro­

gen was bubbled through the solution for the remainder of the work. A 

Corning Model 10 pH Meter was used for pH control. The instrument was 

calibrated on the expanded scale using pH 5.00 buffer previously pre­

pared. With this techinque the pH could be easily maintained at 5.00 ± 

0.01 by dropwise addition of 10 per cent sodium hydroxide. 

Standard solutions of aluminum were prepared by dissolving primary 

standard aluminum wire in hydrochloric acid and by dissolving reagent-

grade hydrated aluminum nitrate, A1(NO3)3•9H2O in water; both solutions 

were standardized by EDTA titration. 

In the first study, a solution containing QMIDA and H2QMIDA, each 

5.0 X 10"'* M, was titrated with a 5.0 x 10"^ M solution of aluminum. 

The potential of the couple was determined to ± 0.1 mv. with a Leeds and 

Northrup Student Potentiometer calibrated against a Weston standard cell. 

The electrodes consisted of a Corning #47606 platinum inlay electrode and 

a Corning #47011 sleeve-type calomel reference, electrode. 
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The solution of aluminum was then added to the deaerated solution 

of QMIDA-H2QMIDA, pH 5.00, using a 10-ml. buret. After each addition 

the pH was adjusted to 5.00 if necessary and the potential was determined. 

Aluminum was added until the potential readings became relatively con­

stant or until 2.5 equivalents of aluminum per equivalent of HzQMIDA had 

been added. 

Runs using concentrations of QMIDA-H2QMIDA of 5 x 10"^, 5 x 10"^, 

5 X 10"^ M were also made using the same procedure, equipment and buffer. 

For the experiment using 5 x 10"^ M only, the buffer concentration was 

decreased to 0.01 M. The solutions of aluminum were diluted as necessary. 

The variation of potential with concentration of aluminum is shown in 

Figure 14. 

2. Potentlometric titration with sodium hydroxide of QMIDA and of H2QMIDA 

in the presence of aluminum 

a. QMIDA Exactly 0.2588 g. (1.22 mmoles) of QMIDA was weighed 

into a 150-ml. beaker and 40 ml. of deionized water added. Using 0.1022 N 

sodium hydroxide as the titrant, theoretically, 10.00 ml. (1.022 meq.) of 

base should have been required for each acidic hydrogen atom. To the acid 

4.09 ml. of 0.2500 M standard aluminum solution was added (1.022 mmoles) 

giving a molar ratio of aluminum to ligand of 1:1. The mixture was stir­

red for 10 minutes and nitrogen was bubbled through the solution to ex­

clude oxygen. The titration was performed slowly with time being allowed 

for the pH reading to stabilize when drift was observed. The pH was 

measured with a Corning Model 10 pH meter equipped with a combination 
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electrode. The titration curve is shown in Figure 15. The titration 

curve for pure QMIDA is shown in Figure 9. 

b. H2QMIDA Exactly 0.2608 g. (1.022 mmoles) of HzQMIDA was 

weighed and titrated as above. The titration curve is shown in Figure 15. 

The titration curve of pure H2QMIDA is reported in earlier work (5, pp. 

28, 61). 

3. Potentiometric titration of aluminum with QMIDA-HgQMIDA 

a. Titration with equimolar QMIDA-H2QMIDA A 5.00-ml. portion of 

a 5.0 X 10"3 M solution of aluminum (0.025 mmoles) was added to 30 ml. of 

0.1 M sodium acetate-acetic acid buffer, pH 5.00. The pH was controlled 

as described in Section 1. and the potential measured with the same Leeds 

and Northrup potentiometer assembly. The solution was stirred magnetic­

ally and nitrogen passed through it. The titrant, a solution of 5.0 x 

10"3 M QMIDA and 5.0 x 10"^ M H2QMIDA in a buffer of pH 5.00 was added to 

the solution of aluminum and the potential measured until a "stable" 

(± 1 mv./min. change) reading was obtained (see Results and Discussion 

section). A solution of sodium acetate, 0.1 M, was added as necessary to 

maintain the pH at 5.00. The titration curve is shown in Figure 16. 

b. Titration with QMIDA A 5.00-ml. sample of 5.0 x 10"^ M 

aluminum (0.025 mmoles) was added to 35 ml. of 0.1 M sodium acetate-

acetic acid buffer, pH 5.00. Potential measurements and pH control were 

carried out as described in Section 1. The aluminum was titrated with a 

5.0 X 10'3 M solution of QMIDA (64.0 mg./50 ml.) in sodium acetate-
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acetic acid buffer, pH 5.00. Using a 10-ml. buret, the titration could be 

made to the point at which the ligand-metal ratio was 2:1. Stock solu­

tions of 0.1 M sodium acetate or acetic acid were added dropwise to main­

tain pH 5.00. The results of the titration are shown in Figure 17. 

c. Titration with HzQMIDA This procedure was the same as that 

of Section b., with the titrant being 5.0 x 10"^ M HjQMIDA. The results 

are also plotted in Figure 17. 

4. Ultraviolet absorption spectra of the QMIDA-H2QMIDA system during 

titration with aluminum 

A 5.0 X 10"5 M solution of QMIDA and H2QMIDA was prepared by dissolv­

ing 64.0 mg. of each material in 50 ml. of 0.1 M sodium acetate-acetic 

acid buffer of pH 5.00 and diluting an aliquot of this solution one hun­

dredfold by adding buffer of pH 5.00. The ultraviolet absorption spectrum 

of this solution was obtained using a Gary 14 recording spectrophotometer 

and 1-cm. quartz cells. A volume, 50.0 ml., of the above solution was 

titrated with 1.25 x 10"^ M aluminum using a 10-ml. buret. After each 

addition of aluminum the ultraviolet spectrum of the solution was obtained 

and the sample returned to the original solution for further titration. 

The titration was stopped at 8.00 ml., representing a molar ratio of alum­

inum to total ligand of 2:1, or a molar ratio of aluminum to each respec­

tive ligand of 4:1. 

Individual ultraviolet spectra were also obtained of QMIDA and 

H2QMIDA at pH 5.00. Then, immediately after a large excess of aluminum 

was added, the spectra were again obtained. The results are given in 
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Tab I e (i. 

5. Potential of the Qulnone-H2QMIDA system as a function of the concen­

tration of aluminum 

An equimolar solution containing 27.0 mg. of quinone, Q, molecular 

weight 108, and 64.0 mg. of HaQMIDA, molecular weight 255, was prepared 

by dissolving both materials in 50 ml. of 0.1 M sodium acetate-acetic acid 

buffer, pH 5.00, and diluting this solution to exactly 500 ml. with de-

ionized water. Potential measurements were made with a Leeds and Northrup 

potentiometer as described in Section 1. The pH was kept at exactly 

5.00 by the addition of 0.1 M'sodium acetate. After deaeration with ni­

trogen, 5.0 X 10"3 M aluminum was added with a 10-ml. buret and the po­

tential determined at 1 to 2 minute intervals until a fairly stable 

(± 0.5 mv.) reading was obtained. 

A solution of 27 mg. of Q and 64.0 mg. of HgQMIDA dissolved in 50 ml. 

of 0.1 M sodium acetate-acetic acid buffer, pH 5.00, and diluted to 500 

ml. with deionized water, was obtained using the procedure above and the 

freshly prepared 5 x 10"^ M solution. Then, "unknown" amounts of the 

aluminum were added to exactly 50 ml. of the Q-HzQMIDA solution and the 

potential determined after 5 minutes standing. Samples were all in the 0.2 

to 1.0 equivalents (of aluminum per total equivalents of ligand) range, 

the range of optimum stability. » 

Later work involved use of the above procedure to obtain calibration 

curves with a pretreatment of the platinum electrode being used in an 

attempt to increase reproducibility. The treatment consisted of 3 sets of 
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alternate anodic and cathodlc polarizations of the electrode in 0.1 N 

perchloric acid. Another platinum electrode was used to complete the 

circuit and 1.5 volts was applied to the cell. The current was passed 

for about 15 seconds and the treatment was always stopped with the plat­

inum electrode being conditioned cathodlc. 

B. Results and Discussion 

1. Potential of the QMIDA-H2QMIDA couple as a function of the concen­

tration of aluminum 

Of the three metals that produced a consistent and significant shift 

in the potential of the QMIDA-H2QMIDA couple in Section VI, aluminum was 

investigated in detail because it produced the largest potential shift, 

approximately 65 mv. in the work described in Section VI. Also, aluminum 

has only one valence state and oxidation-reduction reactions which would 

complicate work with iron are absent. The first step in the study was to 

determine the concentration range over which the QMIDA-H2QMIDA system 

would respond to aluminum. The procedure described in Section VII A. 1. 

was followed. 

Curves of the potential in mv. vs. equivalents of aluminum added over 

the concentration range of 5 x 10"^ M to 5 x 10"^ M QMIDA-H2QMIDA are 

shown in Figure 14. The solutions were continuously deaerated and kept at 

constant temperature during these experiments. Sodium hydroxide was added 

during these titrations to maintain the pH at exactly 5.00 after each ad­

dition of aluminum. In this way the acid produced by the union of alumin-
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Figure 14. Potential of the QMIDA-H2QMIDA couple in sodium acetate-acetic 

acid buffer of pH 5.00 as a function of aluminum added 

A 5 X 10-2 QMIDA and H2QMIDA 

O 5 X 10-3 M QMIDA and H2QMIDA 

n 5 X 10-'+ M QMIDA and H2QMIDA 

®5 X 10 -5 M QMIDA and H2QMIDA 
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urn and HgQMIDA was neutralized. Because of the acid present in the solu­

tions of aluminum and the relatively high buffer capacity of the 0.1 M 

sodium acetate-acetic acid at pH 5.00 compared to the concentrations of 

the ligand, attempts to add standard base and determine the number of 

acidic hydrogen atoms displaced when union occurred were not successful. 

Use of buffer of lower concentrations made pH adjustment more difficult 

and potential readings more erratic. 

As will be seen by examination of Figure 14 the behavior of the sys­

tem toward aluminum is the same at all four concentrations of ligand. A 

slow increase in potential occurs as the first aluminum is added. At 

about one equivalent the slope is a maximum. The rate of increase then 

falls and a maximum reading is obtained at about 1.5 equivalents of alum­

inum. Beyond the 1.5 equivalents point the potential decreases. An ex­

planation of the shapes of the curves is given in Section VII C. 

Briefly, the aluminum first unites preferentially with the H2QMIDA 

species, causing a slow initial increase in potential and more rapid in­

crease as a mole ratio of 1:1 is reached. The Nernst equation for this 

system is, 

E - E° + 0'0591i [QMIDA][H+]2 
QMIDA, H2QMIDA 2 ^ [H2QMIDA] 

which at constant pH can be simplified to 

E = E -  0 . 0 5 9 1  [QMIDA] 
QMIDA, H2QMIDA; pH 5 2 ^[HzQMIDA] 

As HaQMIDA unites with aluminum the denominator of the fraction in the 

logarithm term decreases, causing the potential of the system to shift in 



www.manaraa.com

106 

the positive direction. Some excess aluminum is necessary to cause the 

union of aluminum and H2QMIDA to proceed. As the concentration of free 

H2QMIDA is depleted the union of aluminum and QMIDA begins. At a ratio of 

1.5 moles of aluminum to 1 mole of total ligand the potential reaches a 

maximum, Figure 14. Beyond this point the union of aluminum and QMIDA 

proceeds faster and the potential decreases. This effect is caused by 

the decomposition of the QMIDA after union with aluminum. 

At the lowest concentration of QMIDA-H2QMIDA, 5 x 10"^ M, relatively 

more aluminum must be added to cause complete union of the H2QMIDA and 

there the maximum potential did not occur until about 2 moles of aluminum 

was added. Potential readings increased slowly for about 4 minutes after 

additions of aluminum in the 0.25 to 1.50 mole range. This was probably 

an indication that union of the aluminum was slower at this low concen­

tration (5 X 10"5 M) and was taking longer to reach equilibrium. Accord­

ingly, then, if the aluminum-H2QMIDA compound is not as readily formed, 

the weaker aluminum-QMIDA compound is even less readily formed and the 

decrease in the potential of the system, caused by the subsequent dispro-

portionation of the Al-QMIDA, is slower after the maximum is reached. No 

appreciable decrease in potential is observed until about 4 moles of alum­

inum have been added. Conversely then, in the most concentrated solution 

of ligand, 5 x 10~^ M, the potential reached a maximum smoothly at 1.5 

moles and then decreased immediately with no need for a large excess of 

aluminum. 

The curves of the potential vs. aluminum are shown in Figure 14. 

Although all four curves were of similar shape, they varied in initial 
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potentials (no aluminum added) from 180 to 209 mv. vs. s.c.e. The dis­

placement of the curves toward higher potential as the concentration of 

ligand was decreased cannot be explained by the usual Nernst theory. This 

displacement is probably caused by the high irreversibility (i.e. low ex­

change current density) of the QMIDA-H2QMIDA at the lower concentrations. 

The amount of change in the potentials from the initial to the maximum po­

tential of each curve also varied. The overall range of the potentials 

obtained was 46, 61, 63 and 58 mv. respectively for each curve passing 

from the highest concentration of ligand, 5 x 10"^ M, to the lowest, 

5 X 10~5 M. The preferred concentration for the QMIDA-H % QMIDA is around 

1 X 10-3 ^ where both optimum reproducibility (of initial potentials) and 

optimum potential shift (the largest change in potential per given amount 

of aluminum) are obtained. 

2. Potentiometric titration with sodium hydroxide of QMIDA and of H2QMIDA 

in the presence of aluminum 

In the two sections below the results of the neutralization titra­

tions of QMIDA and H2QMIDA in the presence of aluminum are given. The 

procedure followed was given in Section VII A. 2. H2QMIDA was found to 

unite with one atom of aluminum and form a stable compound. QMIDA was 

found to unite with one atom of aluminum and thereafter to disproportion­

ate to H2QMIDA and a mixture of other products. The curves obtained from 

these titrations are shown in Figure 15. 

a. QMIDA The curve obtained in the titration of QMIDA with so­

dium hydroxide is shown in Figure 9, that of QMIDA in the presence of 

aluminum in Figure 5. The two curves are essentially the same to the 
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Figure 15. Titration of QMIDA and of H2QMIDA with alkali in the presence 

of equimolar aluminum 
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0.2608 g. of H2QMIDA 

0.1022 N Sodium hydroxide 
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point at which 0.7 equivalents of sodium hydroxide have been added. The 

effect of the aluminum is small, because of the low solubility (5 g./l.) 

of QMIDA, unitl the first replaceable hydrogen atom (from the carboxylic 

acid) is removed, producing H(QMIDA)~. Beyond this point the curves are 

radically different, the aluminum is now able to unite with the QMIDA. 

(7.1) H (QMIDA)- + AI+3 + OH" ^ A1 (QMIDA) + + H2O 

making the second replaceable hydrogen atom (from the zwitter ion) appear 

to be a much stronger acid (pK value about 3.5). 

Theoretically, a small break at one equivalent and a large break at 

two equivalents with no further release of hydrogen ion past the two equiv­

alents point would be expected. The first small break is observed but 

there is no break at two equivalents in the titration, in fact the large 

break comes at about 3.3 equivalents, which indicates that an extra 1.3 

equivalents of hydrogen ion are released after union occurs. This can 

not be accounted for by a simple union with aluminum. 

The pH was stable before any base was added. The mixture was tur­

bid and light amber in color because of undissolved QMIDA. As the titra­

tion proceeded the solution became clear at the point where one equivalent 

of sodium hydroxide had been added. By the time two equivalents were 

added the solution had darkened somewhat and was a clear orange. At 

about three equivalents turbidity resembling aluminum hydroxide appeared. 

This increased as the titration continued. The precipitation was accom­

panied by a slow decrease in pH on standing. Finally near the end of the 

titration (about 4.5 equivalents) the turbidity disappeared leaving a 
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t:Jear, dark ainbt;r solution. 

In repeating the titration with a 2:1 molar ratio of aluminum to 

QMIDA, the early part of the curve was shifted downward an additional 

0.15 pH units. The break at one equivalent is just barely discernible 

and no other break is observed, even with a total of 5 equivalents of 

base being added. As above, precipitation started at about three equiva­

lents , pH 4.1. 

The observations described above, involving a marked deviation from 

the expected behavior (there are only 2 replaceable hydrogen atoms) of 

QMIDA with aluminum, can be explained by assuming that QMIDA dispropor-

tionates in the presence of aluminum. This is discussed in Section VII C. 

b. H2QMIDA The H2QMIDA was titrated in the same manner as the 

QMIDA above, following the procedure in Section VII A. 2. The curve is 

shown in Figure 15. In comparison with the titration curve of pure 

H2QMIDA (5, pp. 28, 61), a decrease in pH similar to the one described in 

Section a. is observed up to the point where one equivalent of sodium 

hydroxide had been added. There is no break until three equivalents were 

added and then a small inflection is observed at four equivalents indi­

cating the removal of the last acidic hydrogen, that of the phenolic group 

meta to the IDA substituent. After removing the first acidic hydrogen 

atom the aluminum unites with the H3(H2QMIDA)" species releasing two more 

acidic hydrogen atoms 

(7.2) H3(H2QMIDA)' + AI+3 + 20H~ ^ A1H(H2QMIDA) + ZHzO 

which must be titrated with the base before an end-point is observed. 
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The last phenolic hydrogen atom is also more acidic, pK^-T, and is sub­

sequently titrated with the fourth equivalent of base. 

A picture of the H2QMIDA molecule with the attached aluminum ion 

present is given in Figure 16. This interpretation is in accord with the 

behavior of H2QMIDA with certain metals (5, p. 61). At the beginning of 

the titration solid H2QMIDA was present and the pH decreased slowly after 

each addition of base. The solution did not become clear until almost 

three equivalents of base were added. At the clear-point a small inflec­

tion occurred and the large increase in pH began. Because the pH was 

still below 4 at the clear-point, all of the solid present up to this 

point was probably free H2QMIDA. The neutral aluminum-H2QMIDA species is 

apparently polar enough to be soluble, the two open coordination sites 

on the aluminum ion probably enhancing the solubility. Beyond the clear-

point the solution was colorless to about pH 9; a faint amber color then 

appeared. The stability of the H2QMIDA species, as indicated by lack of 

darkening, in basic solution when united with aluminum is in marked 

contrast to the behavior of H2QMIDA observed earlier (5), and of that 

observed for other substituted hydroquinones. After the titration, when 

air was allowed to diffuse into the quiescent solution, a darker layer 

indicative of decomposition formed on the surface of the solution and 

slowly spread downward over a period of several hours. 

3. Potentiometric titration of aluminum with QMIDA and H2QMIDA 

a. Titration with equimolar QMIDA-H2QMIDA An equimolar solu­

tion of QMIDA-HaQMIDA was added to a solution of aluminum and the poten-
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Figure 16. A model of the H2QMIDA-aluminum compound 
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Liai measured following the procedure given tn Section VII A, 3. a. The 

curve for the titration. Figure 17, resembled a normal titration curve 

but proved to be of no utility for the determination of aluminum. 

After each addition of titrant between 0.0 and 1.0 equivalents per 

equivalent of aluminum, the potential drifted downward on standing. Be­

yond this point the potential was stable. This stability of the potential 

on standing is a result of all the aluminum being coordinated and there­

fore, no further disproportionation of QMIDA, the cause presumably of the 

drift, occurs, see Section VII C. 

The rather rapid potential shift in the 4-ml. region gives the curve 

the resemblance of a typical titration curve. This would tend to make 

the method seem attractive for titrimetric analysis of aluminum, but the 

persistent drift in the potential through the entire region and the non-

stoichiometric nature of the reaction makes the method of no use for the 

determination of aluminum. 

b. Titration with QMIDA and HzQMIDA individually Two titrations 

of a solution of aluminum were made, one with QMIDA and the second with 

HaQMIDA. The procedure used was quite similar to the preceding titra­

tion using the equimolar solution and is given in Section VII A. 3. b. 

In the titration using QMIDA the potential increased up to 0.5 equivalents 

added and thereafter decreased slowly. The titration using HzQMIDA was 

more striking. A curve of negative slope was obtained, the initial po­

tential being 255 mv. At two equivalents the potential had dropped to 

154 mv. The curves are given in Figure 17. 
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Figure 17. Potentiometric titration of 5.00 ml. of 5.0 x 10"^ M aluminum 

with QMIDA and H2QMIDA in 0.1 M sodium acetate-acetic acid 

buffer at pH 5.00 

• L = 5.0 X 10-3 QMIDA 

O L = 5.0 X 10-3 M H2QMIDA 

A L  = 5.0 X 10-3 M QMIDA and H2QMIDA 
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The titration of the aluminum using QMIDA gave a potential with a 

continuous upward drift after the first 1 ml. (0.2 equivalent of QMIDA 

per equivalent of aluminum) of titrant was added. The magnitude of the 

drift decreased as more titrant was added and a stable potential was 

obtained when 0.8 equivalents had been added. Past 0.8 equivalents the 

potential decreased after additions of titrant, the rate of the drift in­

creasing as the end of the titration was approached. Analysis of the 

complete curve, however, revealed no useful information except to con­

firm the earlier indications that the QMIDA disproportionates in the 

presence of aluminum and that the maximum potential occurs at the point 

at which the ratio of A1:QMIDA is approximately 2:1. 

In the early portion of the second titration, using HzQMIDA, there 

was a slight decrease in the measured potential for 2-4 minutes after ad­

dition of titrant after which fairly stable readings were obtained. 

After 1.0 equivalents of titrant had been added a slow but persistent 

downward drift was observed. The slope of the curve is approximately 

that calculated from the Nernst equation from about 1 to 7 ml., having 

a decrease of approximately 60 mv./pAl. 

4. Irreversibility of QMIDA and H2QMIDA 

Unfortunately, the drift observed of the QMIDA-H2QMIDA system along 

with the earlier unsuccessful attempts at oxidation of H2QMIDA at a 

platinum electrode (Section III B. 2.) all tend to indicate th-.t: rhe 

couple is highly irreversible (i.e. the electrode reaction is character­

ized by very low exchange current density). Even though oxidation of 
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platinum tended to catalytically enhance the oxidation of HaQMIDA it has 

been shown by many workers that the potential response of such irrever­

sible systems is very irreproducible and interpretation of the data is 

difficult and unreliable. Meites and Thomas (25, p. 30) state: "Direct 

potentiometry with such irreversible systems is out of the question, for 

the measured potential cannot be related unambiguously to the composition 

of the solution". Kolthoff agrees, noting (20, pp. 65, 70) that "ir­

reversibility is especially noticeable when the corresponding ion con­

centrations become very small" and cautions that "theoretical considera­

tion can be applied only in cases where the electrode reaction is strict­

ly reversible." In fact, Cassidy et al. (33) has reported that in his 

work with substituted hydroquinones and low molecular weight hydroquinone 

polymers that there was some sort of irreversible poisoning of the platinum 

electrodes with some of these systems. He reports: "It was found 

that the use of new bright platinum wire electrodes was required to give 

reproducible potentials. Used platinum electrodes were unsatisfactory, 

in spite of efforts to clean them. There seemed to be no criterion of a 

'good' electrode other than its behavior in an actual titration." Fur­

thermore, he later admits that: "Unlike ordinary titrations, when several 

platinum electrodes would usually agree within one or two millivolts, 

the electrode agreement in polymer titrations was usually only within ten 

millivolts for three new electrodes. This is, however, better than 

previously achieved." Such critical studies of quinone-hydroquinone 

systems, reveal that many of these systems are highly irreversible and 

unsatisfactory for direct potentiometric applications. Decisions regard­
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ing the application of any quinone-hydroquinone systems to direct po-

tentiometry must then be based on experimental results and not strictly 

on theoretical considerations. 

5. Ultraviolet absorption spectra of the QMIDA-H2QMIDA system during 

titration with aluminum 

The ultraviolet spectra of pure QMIDA and H2QMIDA were obtained with 

and without aluminum present. Then an equimolar solution of QMIDA and 

H2QMIDA was titrated with aluminum and the ultraviolet spectrum of the 

solution obtained at several points during the titration. The procedure 

used is given in Section VII A. 4. Analysis of the spectra revealed that 

aluminum unites first with H2QMIDA and then with QMIDA and that the QMIDA 

then undergoes disproportionation. 

Rather dilute solutions of QMIDA-H2QMIDA and aluminum were used so 

that direct ultraviolet spectra could be obtained without dilution. In 

Section 1. it was noted that at these low concentrations a relatively 

larger excess of aluminum was necessary to force the reaction to comple­

tion. This effect was also reflected in the ultraviolet spectra. 

To obtain a proper comparison, spectra of fresh solutions of QMIDA 

and H2QMIDA were obtained and then excess aluminum added and the spectra 

obtained. These spectra are shown in Figure 18 and the data from the 

titration summarized and given in Table 6. 

The absorbance of fresh 8.35 x 10"^ M solution of QMIDA was 1.37 at 

the wavelength of maximum absorption, 246 nm., with end absorption occur­

ring at about 210 nm. On the addition of excess aluminum the band at 
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Figure 18. Ultraviolet absorption spectra of QMIDA and H2QMIDA in the 

presence of excess aluminum at pH 5 

A. 5.0 X 10 3 M H2QMIDA with excess aluminum 

B. 7.9 X 10-5 M QMIDA 

C. 7.9 X 10"5 M QMIDA after excess aluminum was added 
(now having 4.1 x 10"^ M H2QMIDA present) 
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Table 6. Changes in the ultraviolet absorption spectra of QMIDA 
and H2QMIDA as a function of aluminum present 

Material , Pure . , Excess A1 . 
Xmax A „ ̂  Xmax A 

pH 5 
(nm.) (nm.) 

QMIDA 

H2QMIDA 

246 

297 

1.37 

1.86 

<240 
298 

300 

0.24 

1.82 

Titration with Aluminum 

Ml. of A1 
added 

Eq. Al/eq. 
of each ligand 

QMIDA 
Amax A 

H2QMIDA 
Amax A 

0.00 0.0 246 0.82 297 0.22 

0.50 0.25 246 0.82 298 0.22 

1.00 0.50 246 0.82 299 0.22 

2.00 1.00 246 0.83 300 0.22 

3.00 1.50 245 0.80 300 0.22 

4.00 2.00 244 0.74 300 0.23 

6.00 3.00 2303 0.65 300 0.24 

8.00 4.00 b 300 0.25 

&Value approximate, band was a shoulder on the end absorption. 

bOnly end absorption remaining. 
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246 nm. disappeared completely and an H2QMIDA band (see below) that was 

somewhat broader than normal, but at the usual wavelength, appeared, see 

Figure 18. The broadening of the H2QMIDA absorption was noted in de­

composition studies in earlier work (5, pp. 51-59) and has been reported 

by Moser and Cassidy (27) to be a result of polymerization. Addition of 

excess aluminum to the solution of QMIDA caused the end absorption to 

shift from 210 to 240 nm. Further dilution of the solution moved the end 

absorption to shorter wavelengths but yielded no absorption peaks. This 

end absorption is attributed in part to the decomposition products of the 

QMIDA having no aromatic character and in part to the normal end absorp­

tion produced by the H2QMIDA species that was generated by the dispro-

portionation of the Al-QMIDA species, see Section VII C. 

The absorbance of a fresh 5.12 x 10"^ M solution of H2QMIDA was 

1.86 at the wavelength of maximum absorption, 297 nm., with end absorp­

tion occurring at about 230 nm. On the addition of excess aluminum the 

absorption band shifted from 297 to 300 nm. with no significant change 

in intensity, and the end absorption occurred at 237 nm. This is an in­

dication that the AI-H2QMIDA compound is stable and that there is no 

major change in the electronic structure of the hydroquinone ring when 

the aluminum is coordinated. 

In the titration of the QMIDA-H2QMIDA system with aluminum the ul­

traviolet absorption was first determined with no added aluminum. The 

wavelengths of maximum absorption of this spectrum were the same as 

those of the two respective components above and the experimental ab-

sorbances agreed with those calculated using the respective molar ab-
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sorptivities determined in Section V B. 2. and earlier work (5, p. 42). 

Each 2 ml. of the aluminum solution was equimolar to the amount of each 

ligand present. Thus, 4 ml. was required to give an equimolar ratio of 

ligand to aluminum. As the first mole of aluminum was added the only 

change that occurred was the shift of the wavelength of maximum absorp­

tion for the HaQMIDA species to 300 mm. This indicated that the aluminum 

had selectively united with the H2QMIDA species and that no union had yet 

occurred between QMIDA and aluminum. During the addition of the second 

mole of aluminum the only change in the H2QMIDA portion of the spectrum 

was a slight increase in absorbance between the 1.5 to 2.0 mole point, 

due to the disproportionate on of Al-QMIDA. The QMIDA band, however, 

shifted to a slightly shorter wavelength and decreased. As was deter­

mined above, this signified that union of the aluminum by the QMIDA was 

starting to occur. If the coordination of the aluminum by QMIDA were 

producing a stable compound a bathochromic shift in the absorption band 

of the QMIDA would be expected. The decrease in the absorption of QMIDA 

along with the hypsochromic shift in the wavelength of maximum absorp­

tion is actually due to a combination of the disappearance of QMIDA and 

production of new compounds (cf. VII C.) that absorb at shorter wave­

lengths . 

If the chelation were quantitative, all of the ligand should be co­

ordinated at this point. The small change in the spectrum of QMIDA at 2 

moles of aluminum added is an indication that only small amounts of the 

QMIDA had been combined with aluminum, because the disproportion of the 

QMIDA does not occur until after union has occurred. The addition of the 
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third mole of aluminum caused a larger decrease in absorbance and shift in 

wavelength of maximum absorption of QMIDA. Comparison of the ultraviolet 

spectrum with that of the QMIDA in the presence of a large excess of alum­

inum revealed that at this low concentration even the present 100 per cent 

excess of aluminum was not enough to cause attachment of all of the QMIDA 

to aluminum. A repetition of the ultraviolet scan five minutes later in­

dicated that either the union or subsequent disproportionation reaction 

was slow because the disappearance of the QMIDA band continued to occur. 

The slow step is most likely the union of aluminum and QMIDA. There is 

no evidence of any detectable concentration of a QMIDA-aluminum compound 

accumulating before disproportionation occurs (e.g. another absorption 

band of QMIDA in the ultraviolet at longer wavelength). 

After the addition of a fourth mole of aluminum, the absorption 

band of QMIDA disappeared completely leaving only the H2QMIDA band. 

Apparently then, the small increase in the height of the absorption band 

of H2QMIDA was a result of the disproportionation of QMIDA. A more de­

tailed treatment of the stoichiometry of the disproportionation is given 

in Section VII C. 

6. Potential of the Quinone-H2QMIDA system as ̂  function of the concen­

tration of aluminum 

In the subsequent work after the study of the QMIDA-H2QMIDA system 

with various concentrations of aluminum (cf. Section VII B. 1. and Figure 

14) it became apparent that the decrease in the potential readings after 

more than 1.5 equivalents of aluminum was added was caused by the dispro-
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portlonatLon of the Al-QMIDA compound. Such disproportlonatlon produces a 

decrease in the concentration of the oxidized form of the couple and the 

measured potential decreases accordingly. Quinone (Q) was added to a 

solution of H2QMIDA in place of QMIDA. The decrease in potential observed 

with the QMIDA present then disappeared and a stable reading was obtained. 

From the average zero milliliter reading in Figure 14, the formal 

potential of the QMIDA-H2QMIDA couple at pH 5.00 was found to be about 

175 mv. vs. s.c.e. The potential of the quinone-hydroquinone (Q-H2Q) 

couple under identical conditions is 158 mv. (19, p. 1725). Because of 

this rather small increase in the formal potential of the system after 

iminodiacetic acid was introduced into the molecules it was felt that it 

might be possible to substitute quinone for QMIDA in the couple with 

H2QMIDA. A significant mixed potential in the presence of aluminum might 

then be obtained because of the stability of Q in the presence of alum­

inum and the known reversibility of the Q-H2Q system with platinum elec­

trodes . 

The titration curve for the addition of aluminum to the Q-H2QMIDA 

system was almost identical in shape to those of the QMIDA-H2QMIDA system 

(Figure 14) up to one equivalent of aluminum added. Potential shift in 

both systems is caused by the union of H2QMIDA with aluminum in this re­

gion (cf. Section B. 1.). The curve of Q-H2QMIDA was, however, displaced 

downward about 15 mv. compared to the corresponding curve of the QMIDA-

H2QMIDA (5 X 10"'' M). This shift can be attributed, at least qualita­

tively, to the fact that the formal potential of the Q-H2Q couple is low­

er than that of the QMIDA-HgQMIDA couple and, thus, the overall mixed po­
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tential measured would be lower. 

Beyond the first equivalent point the Q-H2QMIDA potential did not in­

crease as quickly as that of the QMIDA-H2QMIDA. The potential leveled out 

at about 1.5 equivalents and only a slight increase, 2 mv., was observed 

with further additions of aluminum. The significant fact was that no de­

crease occurred in the potential beyond 1.5 equivalents. This behavior 

confirms the theory that the measured potential shift is caused predomin­

antly by attachment of the H2QMIDA to aluminum in the presence of the oxi­

dized form of the couple, QMIDA (or Q). As more aluminum is added, union 

of QMIDA and aluminum occurs and then disproportionation occurs, causing 

the potential to decrease. When QMIDA is replaced by Q, however, the ex­

cess aluminum has no effect and the potential remains constant. 

Unfortunately, several other factors discourage hope that a direct 

potentiometric determination of aluminum using the Q-H2QMIDA system can 

be developed. The main problem is the drift in the potential. A sig­

nificant potential drift has been observed in all of the work with the 

Q-H2QMIDA system. This drift did not occur beyond 1.5 equivalents of 

aluminum added but was as large as 20 mv. during a 10 minute pause after 

one equivalent has been added. The drift was greatest around the one 

equivalent region, which corresponds to the most vertical portion of the 

curve. Both positive and negative drift were observed, with the posi­

tive being larger. Although the rate of drift decreased with time, it 

is often as high as 1 mv. per minute, 10 minutes after the last addition 

of aluminum. A consistent drift in the positive direction might be at­

tributed to slow formation of the AI-H2QMIDA compound, but the presence 
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of negative drift in other titrations makes this explanation improbable. 

The most likely explanation is the irreversibility of the oxidation of 

H2QMIDA on platinum as was discussed in Section VII B. 3. b. The drift 

only occurs over the part of the titration in which union of aluminum 

and H2QMIDA controls the potential of the couple. This irreversibility 

together with the fact that a mixed potential of the two systems (Q-H2Q 

and QMIDA-H2QMIDA) is being measured results in consistently unstable 

readings. 

The two other limitations of the Q-H2QMIDA system are the smaller 

potential range observed and the insolubility of quinone. For the QMIDA-

H2QMIDA system of equal concentration the total range of potential change 

measured as aluminum was added was 63 mv. The total range of the Q-

H2QMIDA couple was only 30-40 mv. which makes the effects of drift rela­

tively large. The last limitation, although not critical, is the low 

solubility of Q at pH 5. 

The results of the "unknown" samples determined with the calibration 

curve prepared as described in the corresponding section of Experimental 

Work were poor. The "unknown" amounts of aluminum were between 0.2 to 

1.0 moles per mole of ligand. The relative error in the values obtained 

was ± 20 per cent for the lower samples (0.2 to 0.6 moles) and somewhat 

better in the 0.6 to 1.0 mole range. 

Pretreatment of the platinum electrode did not improve the results 

obtained. The instability and drift of the Q-H2QMIDA potentials were 

greater than before treatment. After the last cathodic polarization the 

electrode repeatedly indicated a potential of about 250 mv. vs. s.c.e. 



www.manaraa.com

129 

after standing in the solution for 3 minutes. The earlier work without 

electrode pretreatment had always given starting potentials near 170 mv. 

The potentials measured with the treated electrode consistently drifted 

downward until the 1.5 mole point in the titration where stable readings 

were obtained. At this point the H2QMIDA is completely coordinated and 

the potential being measured is due to the reversible Q-H2Q couple. 

Except for the high drift in the readings the system behaved as it 

did without pretreatment of the electrode. The net effect of the pre-

polarizations of the electrode was to displace the curve upward, but not 

change the shape or range. The increase in potential cannot be readily 

explained but probably resulted from the effects of traces of more re­

versible systems on the "sensitized" surface of the platinum. In fact, 

the enhanced sensitivity of the electrode was evident in the variation 

of the potential as related to stirring speed. The increase in the drift 

of the potential over the range where the H2QMIDA species was producing 

the potential change is further proof of the high irreversibility of 

H2QMIDA as discussed in Section VII B. 3. b. 

C. The Nature of the Reaction of 

Aluminum with QMIDA and H2QMIDA 

From the data and results presented in Section B. it became evident 

that the QMIDA-H2QMIDA system was too irreversible to be useful for the 

direct potentiometric determination of aluminum. It was also clear that 

the reactions of aluminum with QMIDA and with H2QMIDA were quite differ­

ent. In this section the data obtained will be combined with related work 
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from the literature, to further elucidate the chemistry of the reaction 

of aluminum with QMIDA and HzQMIDA. 

In the following section the order of events occurring as aluminum 

is added to a solution of QMIDA and H2QMIDA is briefly described. 

1. Order of reaction 

When aluminum is slowly added to an equimolar solution of QMIDA-

H2QMIDA at pH 5 (preferably of concentration about 1 x 10"^ M), combina­

tion first occurs only with H2QMIDA. This reaction is accompanied by a 

shift of the reduction potential in the positive direction, Section B. 1., 

by a change in the ultraviolet spectrum, Section B. 4., and by a change in 

the shape of titration curve of H2QMIDA with sodium hydroxide. Section 

B. 1. Titration of H2QMIDA with sodium hydroxide in the presence of 

aluminum involves the neutralization of three hydrogen atoms. The com­

pound formed is thus a one to one compound, AI-H2QMIDA, carrying no 

charge, Section B. 2. The formation of this compound reduces the concen­

tration of H2QMIDA causing the reduction potential to shift in the posi­

tive direction. 

After one equivalent of aluminum has been added to the equimoJar 

mixture of QMIDA and H2QMIDA formation of a slightly-dissociated compound 

of QMIDA begins. This reaction is accompanied by the disappearance of 

the absorption band at 246 nm.. Section B. 4., by a change in the neutral­

ization titration curve, an additional 1.4 moles of hydrogen ions being 

neutralized that are not released by mere chelation. Section B. 2., and 

by a shift in the reduction potential in the negative direction (beyond 
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1.5 equivalents of added aluminum), Section B. 1. 

2. Disproportionation of QMIDA 

The disappearance of QMIDA was a direct result of the formation of 

the aluminum compound. Although QMIDA decomposes slowly when alone in 

aqueous solution Section V B. 8., the composition is greatly accelerated 

by the aluminum. The aluminum then either causes the decomposition of 

QMIDA as union occurs by attacking the ortho carbonyl group, or stabilizes 

some subsequent reactive intermediate formed by the QMIDA molecule. 

It is widely accepted that quinone systems react through a variety 

of radical mechanisms. Many of these radical systems have been studied 

and the radicals with finite lifetimes identified using ESR. Waters (46) 

has reported that semiquinone radicals such as 

usually disproportionate to a mixture of quinone and hydroquinone. If 

aluminum in some way facilitated the formation of an analogous radical 

the appearance of HaQMIDA after aluminum was added to QMIDA, Section B. 

4., could be easily explained. 

Under similar conditions (neutral aqueous solution, but no aluminum) 

several workers have reported the oxidation of quinone to hydroxyquinones 

(6; 14; 16; 31; 48). These hydroxyquinones are not stable and undergo 

change by a variety of reactions, one of the more common being ring-

opening (13; 36). 
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The combination of a disproportionation followed by ring-opening 

offers an explanation of the phenomena observed in the decomposition of 

the aluminum-QMIDA compound. Figures 19 and 20. Immediately after (or 

as) the aluminum-QMIDA compound is formed a disproportionation takes 

place. One molecule of QMIDA is oxidized to the hydroxyquinone, which 

being unstable undergoes ring-opening according to the mechanisms given 

by Schtschukina (36) and Flaig (13). The other molecule is reduced to 

H2QMIDA. No net oxidation-reduction occurs in the overall process. 

Support for this proposal is provided by the results reported in Section 

B. In the following paragraphs the results and proposed mechanism are 

compared. 

The reduction potential of the QMIDA-HaQMIDA-aluminum system shifts 

in the negative direction beyond 1.5 equivalents of aluminum added, indi­

cating that QMIDA is being removed. Section B. 1. 

The titration of QMIDA in the presence of aluminum with sodium hy­

droxide, Section B. 2. a., with equimolar aluminum present, about 3.3 

moles of hydrogen ions are produced per mole of QMIDA. The additional 

1.3 moles can be explained as follows: 1) half of the QMIDA is reduced 

to H2QMIDA which then unites (or remains united) with the aluminum. A 

precipitate, probably aluminum hydroxide (only half of the aluminum is 

tied up with the H2QMIDA present, the other half can be pulled away from 

the weak compounds formed with the ketoacids present), was observed when 

about three moles of sodium hydroxide were added, but it redissolved later 

in the titration. 

The H2QMIDA loses 3 acidic hydrogen atoms upon union whereas the 
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QMIDA loses only 2, so there is a net increase of (1 hydrogen) x % mole 

of QMIDA) =0.5 moles of hydrogen ion. 2) the other half of the QMIDA 

is oxidized to the hydroxyquinone which undergoes ring-opening and forms 

either an unsaturated ketoacid or a saturated ketoacid, Figures 19 and 20. 

The continued presence of aluminum would produce no change in the number 

of hydrogen atoms released when considering the iminodiacetic acid (-R) 

portions of these products. The carboxylic diacid would produce (2 x îg 

mole of QMIDA) = 1 mole of additional acid if it were the sole product 

of the ring-opening. If the monocarboxylic acid were the sole product of 

the ring-opening there would, similarly, be of a mole of acid produced. 

Therefore, the additional 0.8 moles of acid produced that was not a result 

of the HjQMIDA formation was from a mixture of the mono and dicarboxylic 

acids in a ratio of approximately 2:3. The presence of greater amounts 

of aluminum increased the ratio of diacid but precipitation of aluminum 

hydroxide prevented attainment of more significant data. The darkening of 

the solutions after the titration indicated that further degradation of 

the products occurred as the titration indicated that further degrada­

tion of the products occurred as atmospheric oxygen diffused into the open 

beaker. 

There was no data in Section B. 3. that could be applied toward 

further elucidation of the nature of the disappearance of the QMIDA. 

The ultraviolet absorption spectra of QMIDA and aluminum. Section B. 

4., proved to be the most enlightening of the data obtained. For after 

the aluminum had united with the H%QMIDA the ultraviolet spectrum revealed 

that the QMIDA disappeared as more aluminum was added, but at the same 
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time more H,QMIDA was produced, Figure 18. Calculations using the respec­

tive molar absorptivities of QMIDA and H2QMIDA were employed to determine 

the amounts of QMIDA remaining and HgQMIDA formed. It was found that at 

very low concentrations of aluminum and QMIDA, relatively less H2QMIDA 

was formed than if excess aluminum was added to a higher concentration of 

QMIDA (here, the solution had to be diluted before the spectrum was ob­

tained). At the higher concentrations which corresponded to the usual 

working ranges (1 x 10"^ M) of QMIDA, it was found that one-half of the 

QMIDA reverted to H2QMIDA when aluminum was added. The reduction of QMIDA 

to H2QMIDA was also observed in the earlier stability studies. Section V 

B. 8. In one study, although there was still a small amount of QMIDA 

present, measurement of the increase in absorbance at 297 mn., indicated 

that 75 per cent of the QMIDA had been reduced to H%QMIDA after 3 days. 

It is, therefore, probable that the aluminum catalyses, somewhat drastic­

ally—to cause ring-opening, a type of normal decomposition for the QMIDA 

that usually is much slower (catalyzed by light and trace impurities) and 

less harmful to the ring system. 

There was no evidence of any measurable amount of hydroxyquinone in 

the ultraviolet spectra although indications of it were found in earlier 

work. Section IV B. 1. The disappearance of all other bands in the ultra­

violet spectrum, except for that of the H%QMIDA (Figure 18), was a clear 

indication of loss of aromatic character of the remaining QMIDA, which 

could only be explained by ring-opening. The increased end absorption 

that accompanied the disappearance of QMIDA is consistent with this ob­

servation and was undoubtedly due to the saturated and unsaturated keto-
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carboxylic acids formed in the ring-opening reaction. Such acids have 

strong ultraviolet absorption at wavelengths of less than 240 nm. (38, 

pp. 159-162). 

The replacement of QMIDA with quinone (Q) was discussed in Section 

B. 5. and this section contains no data for the study of QMIDA other than 

to confirm the fact that the decomposition of QMIDA was the cause of the 

decreases in the potential of the QMIDA-H2QMIDA in the earlier work. 

The proposed disproportionation of QMIDA, Figures 19 and 20, is then 

consistent with the reported behavior of quinones as well as with the data 

obtained. However, it is probable that there are numerous other minor 

reactions occurring during the decomposition of QMIDA. 

3. Additional related literature 

A search of the literature revealed that since before the turn of the 

century workers have been quite active in the study of quinone-hydroquin-

one systems and the decomposition products of such systems as they relate 

to humic acid formation. Humic acid has been defined as "that portion 

of the soil organic matter which is soluble in base and insoluble in miner­

al acid and alcohol" (39). It is "an ubiquitous brown polymeric constitu­

ent of-the organic matter of soil". The study of humic acids is so com­

plex that to date no one agrees on even a general representative structure 

for them. However, because this subject deals with what we might call 

"spontaneous" reactions of quinones and hydroquinones in slightly acidic 

or basic solution, it was usefully applied to the decomposition of QMIDA. 

Two excellent, recent reviews on humic acids are available (40; 47). The 
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more recent works in the chemical literature dealing with reactions and 

decompositions of quinone systems are mainly of work done in wholly or 

partially nonaqueous solvents and thus of limited use here. 

A number of workers have been engaged in studies of the polymeriza­

tion products of quinones, H. G. Cassidy and W. Flaig having been the most 

active. Taylor and Battersby have edited a 350 page book dealing with 

the many forms of coupling reaction of phenols, quinones, and more complex 

naturally occurring compounds (8). Excellent summaries of the general 

chemical and physical behavior of quinones (42, pp. 899-913) and hydroqui-

nones (32,pp. 483-492) are available. 

The publications of two groups of workers dealing with similar com­

pounds (6; 44) make it seem quite likely that there is formation of dimers 

between QMIDA molecules. Recently, it has also been reported that the 

slow but discernible drift in the quinhydrone electrode was caused by a 

nucleophilic attack by acetate ion on the quinone portion of the couple 

(7). 

The overwhelming complexity of the decomposition mechanisms of 

quinones is evidenced by the large number of papers dealing with the sub­

ject, especially in the humic acid area. The great reactivity of qui­

nones and the decomposition products of quinones led to the decision not 

to attempt isolation of the products of the disproportionation of QMIDA. 

The products would undoubtedly undergo further reactions during the isola­

tion procedure and yield no data of practical value toward the study of 

the original oxidation-reduction system. 
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VIII. SUMMARY 

An investigation has been made of an oxidation-reduction couple 

composed of compounds bearing a chelating group with the objective of 

making a reversible electrode responsive to metal ions. 

The compounds studied are the analogs of quinone and hydroquinone; 

l,4-quinone-2-methyleneiminodiacetic acid and l,4-dihydroxyphenyl-2-

methyleneiminodiacetic acid. 

Earlier work (Contario, M.S. Thesis, Iowa State University, 1968) 

on l,4-dihydroxyphenyl-2-methyleneiminodiacetic acid (HaQMIDA) has been 

extended, particularly in respect to fluorescence when irradiated with 

ultraviolet light, union with calcium and magnesium, titration with stand­

ard oxidizing agents, and conversion to l,4-quinone-2-methyleneimino-

diacetic acid (QMIDA) by oxidation. 

HjQMIDA has been found to fluoresce in the ultraviolet with the 

wavelength of maximum fluorescence occurring at 352 nm. when an excita­

tion wavelength of 292 nm. was used. 

The fluorescence as affected by pH and by the presence of calcium 

and magnesium (other properties of the calcium and magnesium compounds 

are discussed in the M.S. work) has been investigated. The compound 

formed by calcium and HaQMIDA proved to be eight times more fluorescent 

than the free acid or the magnesium compound. 

Fotentiometric titration of HaQMIDA using eleven chemical oxidizing 

agents was attempted, in 1 N sulfuric acid and in acetate buffer of pH 

5.5. Smooth oxidations resulting in conventional titration curves with 
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good end-points and interpretable stoichiometry have been obtained only 

with two oxidizing agents, potassium molybdicyanide and periodic acid. 

Four of the oxidizing agents used produced no oxidation under any con­

ditions . 

At low concentration a one-electron oxidation of H2QMIDA to the semi-

quinone was obtained using the molybdicyanide. With higher concentrations 

of molybdicyanide and with periodic acid, a normal two-electron oxidation 

to QMIDA occurred. 

The electrochemical oxidation of H%QMIDA to QMIDA by controlled-

anode potential on mercury, platinum, gold, and graphite electrodes has 

been attempted. No oxidation occurred; the QMIDA-H % QMIDA system is 

apparently irreversible. 

QMIDA has been prepared by the oxidation of H2QMIDA with sodium per-

iodate. Pure material can only be prepared by close attention to temper­

ature, pH, manner of mixing reagents, and deaeration. Slow, spontaneous 

decomposition sets a limit on the maximum purity which can be obtained. 

In the ultraviolet absorption spectrum of QMIDA only one band ap­

pears, at 246 nm. The molar absorptivity at this wavelength is 17,400. 

The purity of QMIDA has been found to be 98.5 per cent by neutraliza­

tion titration and 92.4 per cent by reduction titration; the major impur­

ity is H2QMIDA. From the titration data values were found for the acid 

dissociation constants: pKi, 2.64; pK2, 7.31. The formal potential of 

the QMIDA-H2QMIDA couple has been found to be 0.68 volts vs. N.H.E. in 

0.01 M sulfuric acid. The infrared and PMR resonance spectra of QMIDA 

have been obtained and found to be consistent with the proposed structure. 
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The solubility of QMIDA is 5.6 g. per 1. in deionized water and 6.3 

g. per 1. in 0.1 M sulfuric acid. 

Decomposition of QMIDA occurs on standing in aqueous solution; the 

rate of the decomposition is accelerated by light. Judging from the ul­

traviolet absorption spectrum, the decomposition product is probably 

Hï QMIDA. 

Attempts to prepare the quinhydrone of QMIDA and H%QMIDA in water, 

acetone and ethanol were not successful. 

Potentiometric titrations of HaQMIDA with potassium molybdicyanide 

and sodium periodate have been performed in the presence of various metal 

ions. The effects of thirteen metals on the formal potential of the 

QMIDA-HgQMIDA potential were thus obtained. Three metal ions, aluminum, 

iron, and thorium, produced a significant shift of the formal potential, 

each in the positive direction. 

A detailed investigation of the interaction of aluminum with QMIDA 

and H2QMIDA has been made. The potential of the QMIDA-HgQMIDA couple 

increases with increasing concentration of aluminum. The optimum concen­

tration of the ligand is approximately 1 x 10"^ M. Aluminum first unites 

preferentially with HaQMIDA and then with QMIDA as excess aluminum is 

added. 

QMIDA and HaQMIDA have been titrated with alkali in the presence of 

aluminum. Two acidic hydrogen atoms are displaced on the union of HaQMIDA 

and aluminum. With QMIDA, the presence of the aluminum causes decompo­

sition and the release of an additional 1.3 moles of hydrogen ions; these 

are not directly attributable to the union with aluminum. This discrep­
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ancy arises from the disproportionation of QMIDA after union with aluminum. 

Potentiometric titrations of aluminum with QMIDA, HaQMIDA and an 

equimolar mixture of the two ligands have been carried out. The curves of 

each of the titrations are quite different but prove to be of no use in 

the determination of aluminum. 

The ultraviolet absorption spectra of the QMIDA-H2QMIDA system during 

titration with aluminum indicates that after union with aluminum, dis-

porportionation of QMIDA occurs producing H2QMIDA and hydroxy-QMIDA, the 

latter undergoing further change forming a mixture of saturated and un­

saturated ketoacids. The decomposition of QMIDA results in a shift of 

the potential of the couple in the negative direction. A stable alumin-

um-QMIDA compound is not produced. 

Because of the instability of QMIDA in the presence of aluminum, the 

QMIDA was replaced with quinone and the potential of the quinone-HzQNIDA 

system measured as a function of the concentration of aluminum. There 

was little change in the behavior of the system except that the potential 

was stable with excess aluminum present. Determinations of the aluminum 

in "unknown" samples were carried out using a calibration curve prepared 

using known amounts of aluminum; the results were poor, owing largely to 

instability (drift) of the potential being measured. A pretreatment 

("cathodic conditioning") of the platinum indicator electrode only in­

creased the drift in potential. 

The probable nature of the decomposition of QMIDA after union with 

aluminum has been deduced from various lines of evidence. Disproportion­

ation to the corresponding hydroquinone (H2QMIDA) and hydroxyquinone 
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(hydroxy-QMIDA) is probably the first step followed by further degrada­

tion of the hydroxyquinone by ring-opening and polymerization. 
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